& RedHat

Cloud-native Network Function (CNF) Requirements

Version 1.3
January 2022

Table of Contents

1. Cloud-native Network Function Requirementst 1
L1 INrOodUCHION . ..ot e e e e e 1
L2, S0P . vt it i 1
L3 REfACIONNG . . .o 1
LA POOS . ottt 2

2. CNF Developer GUIdEIINES.ot e e e 3
2.0 Preface . .. 3
2.2. GoAlS& NON-QOaIS. . . .ottt 3
2.3.Principleof Least Privilege. 3
2.4. Avoid Accessing ResourceSOnNHOSEo 4
2.5. Avoid Mounting host directoriesasvolumes. 4
2.6. Avoid the host’'snetwork Nnamespaceo oot e 4
2.7, Capabilities. . . . 4

2.7 L IPC L OCK . .t 6
2.7 2. NET _ADMIN . 6
2.7.3. (Avoid) SYS ADMIN ... 7
27.4.SYS NICE ... 7
2.7.5.8YS PTRACE .. .o 7
2.8. Operations that can be executed by OpenShift. 7
2.9. Operations that cannot be executed by OpenShift 9
2.10. Analyzing Your AppliCatioN.ot 10
2.11. CapabilitiesSExXample 10

3. CNF BESt PraCtiCe . ..ottt e 14
3.1. Control Planeand Management CNFS. i 14

4. Cloud-native CNFs- SCCImplementationco i 15
4.1. CNFsthat do not require advanced networking features (Category 1) 15
4.2. CNFs that require advanced networking features (Category 2)coon... 16
4.3. User-Plane CNFS (Category 3) . . .o v it et et e e et e e 18

5. CNF Expectations and PErmiSSIONS oo u ittt et et 22
5.1. Cloud Native Design Best PracCtiCes.t 22
5.2. HighLevel CNF EXPeCtationS oottt et e e 23
5.3. Platform ReSINCHONS oo 24

6. OpenShift Platform. e 26

7. Software CorelEAQEot e 27

T2. KUDEBINELES o ot e e e e e e 27

7.3, CNE = OVIN . o e 27
7.4.Container storage (CSl) ... oot e 28
7.5, BIOCK StOragEot e 28
7.6. ODJECE SLOrAgE. . .« o v ottt e e e 28
7.7, Container RUNIME e e 29
7.8.CPUManager / PINNINGot e e e e e 29
7.0, HOSE OS. . 29
8. PaaS Core/Edgeot 31
8.1. Certificate Managementttt e e 31
8.2. DIStributed TraCing.ottt 31
8.3, POO SECUNLY . . oot 31
8.4. Load BalanCer/ServiCe ProXYot 31
8.5. CI/CD Framawork e e e 31
8.6. KUDErneteS APl VarSIONS oottt ettt e 31
0. PO PEIMISSIONS . . . oottt e e 32
10. OpenShift Best PraCtiCes oot e e e e 33
10,0 LOgOING. « v ottt 33
10.2. MONITONNG .« oottt e e e e e e e 34
10.3. CPU AllOCAION. . . vttt et e e e ettt 35
10.3.1. NUMA Configuration.o ottt e e et et es 35
10.4. Memory AllOCation. i e 35
10.5. Affinity / Anti-affinity 36
10.6. Taintsand TOIErationS.ot e e e et e 36
10.7. ReQUESES / LIMILSot 37
10.8. POOS . ..ot 37
10.8. 1. NONaKed POASot e 37
10.8.2. IMagetagging oottt e 37
10.8.3. ONe ProCESS PeF CONLAINE. . . . o\ vttt ettt ettt ettt 38
10.8.4. INIt CONAINENSttt ittt ettt ettt 38
10.9. Security / RBAC . . ot 38
10.20. MUIUS. .« . oo e e e e e e 39
10.10.2. MUltus SR-IOV / MACVLAN . . oot e e 39
10.10.2. SR-IOV Interface SEttings oo 40
10.10.3. Attaching the VF to apod.ot 43
10.10.4. Discovering SR-IOV devices properties from the application. 44
10.10.5. NUMA AWEIENESS . . . o v vttt ettt e e e e et ettt et e et es 45

1000 UpPQrades.ot 46

10.11.1. Handling platformupgrades.t 46

10.12. OpenShift Virtualization / kubevirt 46
10.12.1. Openshift Virtualization and VMs (CNV) best practices. 46
10.12.2. VM image Import Recommendations(CDI)oo... 47

11. Operator BESt PraCtiCesottt e e e e e e 49
12. Container Best PractiCes. oot e 50

121, PO EXIt SEaUS . . . oottt e et e e e e e e 50

12.2. Graceful Terminationot 50

12.3. Pod Resource Profiles.o 51

12.4. Storage: @MY Dir. . ..o 51

125. Livenessand ReadinessProbes 51

12.6. UseimagePullPolicy: IfNOtPresent i i 52

12.7. Automount Servicesfor POOS.ot 52

12.8. DiStuption BUQELSo 53

13. NetWOrking OVEIVIEW. . . . oottt e e ettt e e e e e e 54

13.1. OVN-kubernetes CNI o e 54

14.User Plane FUNCLIONS oot e e e 55

14.1. Performance Addon Operator.o it e 55

14,2 HUQEPAGES . . . o oottt et e e e e e e e 55

14.3. CPU IS0latioNottt e e e e e 56

144 NUMA AWEIENESS . . . ottt ettt e ettt e e e ettt ettt 59

15. Application Service Exposure to External Networks. 61
16. Service Mesh for Inter/IntraNF 63

16.1. Service Mesh INtroduCtion o e 63

16.2. Service Mesn TapPiNg . ..o v ettt e e e 65

16.3. Service Mesh Requirementsfor CNF. e 66

17. Application Deployment. i e 68
18, StANAardS . ..o 69

18.1. Container Labeling Standards 69

18.2. Image Standardso 69
18.2.1. Universal Base Imageinformation., 70

10, SECUNLY . . et e e e e 72

19.1. Elevated privilege container capabilities 72

19,2, CPI-810. . . .ottt 72

19.3. 1Mage SECUIMLY . . . oottt et e e e e e e e e 72

19.4. CNF NEtWOIrK SECUMTY . . . oottt e e e e e e e e e e e 72

10.5. SecretsManagement.o 72

20. CoNtriDULOIS o 74

21. Document History. . .
22. Document Approvals

Chapter 1. Cloud-native Networ k Function Requirements

1.1. Introduction

Red Hat is building a Telco platform to serve network needs across Core, Edge, Lite and Far

Edge. In thisjourney, the platform is the entry path for 5G Core Cloud-native Network Functions

(CNFs) and brings forth the introduction of a CNCF-based stack for CNFs.

In addition, Red Hat is also building a Kubernetes-based Container as a Service (CaaS) Platform
with Platform as a Service (PaaS) services to support 5G Services-based architecture.

1.2. Scope

This document, and the current platform configuration, are currently limited in scope to Wireless

network el ements.

This document covers the requirements for tenants to run their application on Red Hat's
OpensShift Network Functions Virtualization Infrastructure (NFVI1) platform.

1.3. Refactoring

Network Functions (NFs) break their software down into the smallest sets of microservices
possible. Running monolithic applications inside a container is not the operating model
recommended by Red Hat.

It is hard to move a 1,000 |b boulder. However, it is easy when that boulder is broken down into
many pieces. All CNFs break apart each piece of the functions/services/processes into separate
containers. These containers can still be within OpenShift pods, and all of the functions that
perform a single task must be within the same namespace.

Thereis aquote that describes this best from Lewis and Fowler: "the microservice architectura
style is an approach to devel oping a single application as a suite of small services, each running
in its own process and communicating with lightweight mechanisms, often an HT TP resource
API. These services are built around business capabilities and independently deployable by fully
automated deployment machinery."”

Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS IS and subject to
change without notice. All trademarks used herein are property of their respective owners.

1

https://martinfowler.com/articles/microservices.html

1.4. Pods

Pods are the smallest deployable units of computing that can be created and managed in
Kubernetes.

A pod can contain one or more running containers at atime. Containers running in the same pod
have access to several of the same Linux namespaces. For example, each application has access
to the same network namespace, meaning that one running container can communicate with
another running container over 127.0.0.1:<port>.

The same is true for storage volumes. All containersin the same pod have access to the same
mount namespace, and can mount the same volumes.

Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS |S and subject to

2 change without notice. All trademarks used herein are property of their respective owners.

Chapter 2. CNF Developer Guidelines

2.1. Preface

Cloud-native Network Functions (CNFs) are containerized instances of classic physical or
Virtual Network Functions (VNFs) which have been decomposed into microservices supporting
elasticity, lifecycle management, security, logging, and other capabilitiesin a Cloud-Native
format.

2.2. Goals & Non-goals

This section ismainly for the developers of CNFs, who need to build high-performance Network
Functions (NFs) in a containerized environment. The guidance provided in these guidelines
should assist partners when devel oping their CNFs so that they can be deployed on the OpenShift
Container Platform (OCP) in a secure, efficient and supportable way.

These guidelines do not detail how to build CNF's functionality.

2.3. Principle of Least Privilege

In OpenShift Container Platform (OCP), it is possible to run privileged containers that have all of
the root capabilities on a host machine, allowing the ability to access resources which are not
accessible in ordinary containers. This, however, increases the security risk to the whole cluster.
Containers should only request those privileges they need to run their legitimate functions. No
containers will be allowed to run with full privileges without an exception.

The genera guidelines are:

1. Only ask for the necessary privileges and access control settings for your application.

2. If the function required by your CNF can be fulfilled by OCP components, your application
must not be requesting escalated privileges to perform this function.

3. If possible, avoid using any host system resource.

4. Leveraging read only root filesystem when possible.

Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS |S and subject to

change without notice. All trademarks used herein are property of their respective owners. s

2.4. Avoid Accessing Resources on Host

It is not recommended for an application to access the following resources on the host.

2.5. Avoid M ounting host directories as volumes

It is not necessary to mount host /sys/ orhost /dev/ " directory asavolumeinapod to
use a network device, such as Single Root /O Virtualization (SR-IOV) VF. The moving of a
network interface into the pod network namespace is done automatically by the Container
Network Interface (CNI). Mounting the whole /sys/ or /dev/ directory in the container overwrites
the network device descriptor inside the container, which causesthedevi ce not found or
no such file or directory error.

Network interface statistics can be queried inside the container using the same/ sys path aswas
done when running directly on the host. When running network interfaces in containers, relevant
[sys/ statisticsinterfaces are available inside the container, such as

/ sys/class/ net/netl/statistics/,/proc/net/tcpand/proc/net/tcp6.

For running Data Plane Development Kit (DPDK) applications with SR-IOV VF, device
specifications (in the case of vfio-pci) are automatically attached to the container viathe Device
Plugin. Thereisno need to mount the/ dev/ directory as avolume in the container, as the
application can find device specifications under / dev/ vf i o/ inthe container.

2.6. Avoid the host’s networ k namespace

Application pods must avoid using hostNetwork. Applications may not use the host network,
including nodePort for network communication. Any networking needs, beyond the functions
provided by the pod network and ingress/egress proxy, must be serviced via a multus-connected
interface.

2.7. Capabilities

Linux Capabilities allow you to break apart the power of root into smaller groups of privileges.
The Linux capabilities(7) man page provides a detailed description of how capabilities
management is performed in Linux. In brief the Linux kernel associates various capability sets
with threads and files. The thread's Effective capability set determines the current privileges of a
thread. When athread executes a binary program the kernel updates the various thread capability
sets according to a set of rules that take into account the UID of the thread before and after the

Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS |S and subject to

4 change without notice. All trademarks used herein are property of their respective owners.

exec system call and the file capabilities of the program being executed. Refer to the blog series
in [10] for more details about Linux capabilities and some examples.

Users may choose to specify the required permissions for their running application in the
Security Context of the pod specification. In OCP, administrators can use the Security Context
Constraint (SCC) admission controller plugin to control the permissions allowed for pods
deployed to the cluster. If the pod requests permissions that are not allowed by the SCCs
available to that pod, the pod will not be admitted to the cluster.

The following runtime and SCC attributes control the capabilities that will be granted to a new
container:

» The capabilities granted to the CRI-O engine. The default capabilities are listed here:
https://github.com/cri-o/cri-o/blob/master/internal/config/capabilities/capabilities.go

Asof version 1.18, CRI-O no longer runswith NET_RAW or SYS CHROOT

NOTE . . . :
by default. https://cri-o.github.io/cri-o/v1.18.0.html

» Thevauesin the SCC for allowedCapabilities, defaultAddCapabilities and
requiredDropCapabilities

« allowPrivilegeEscalation: controls whether a container can acquire extra privileges through
setuid binaries or the file capabilities of binaries

The capabilities associated with a new container are determined as follows:

« If the container has the UID 0 (root) its Effective capability set is determined according to the
capability attributes requested by the pod or container security context and alowed by the
SCC assigned to the pod. In this case, the SCC provides away to limit the capabilities of a
root container.

* If the container has a UID non O (non root), the new container has an empty Effective
capability set (see https://github.com/kubernetes/kubernetes/issues/56374). In this case the
SCC assigned to the pod controls only the capabilities the container may acquire through the
file capabilities of binariesit will execute.

Considering the general recommendation to avoid running root containers, capabilities required
by non-root containers are controlled by the pod or container security context and the SCC
capability attributes but can only be acquired by properly setting the file capabilities of the
container binaries.

Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS |S and subject to

change without notice. All trademarks used herein are property of their respective owners. 5

https://github.com/cri-o/cri-o/blob/master/internal/config/capabilities/capabilities.go
https://cri-o.github.io/cri-o/v1.18.0.html
https://github.com/kubernetes/kubernetes/issues/56374

For more information on how to define and use the SCC, see Managing Security Context
Constraints.

DEFAULT Capabilities

The default capabilities that are allowed viathe restricted SCC are as follows:
https://github.com/cri-o/cri-o/blob/master/internal/config/capabilities/capabilities.go

" CHOWN', +
" DAC_OVERRI DE", +
"FSETID', +
"FOMER', +

" SETPCAP", +

" NET_BI ND_SERVI CE"

2.7.1. 1PC_LOCK

IPC_LOCK capahility isrequired if any of these functions are used in an application:

m ock()
m ockal | ()
shnect ! ()
mrap() .

* % X

Even though ‘mlock’ is not necessary on systems where page swap is disabled (for example, on
OpenShift), it may still be required asit isafunction that is built into DPDK libraries, and
DPDK-based applications may indirectly call it by calling other functions.

2.7.2. NET_ADMIN

NET_ADMIN capability isrequired to perform various network-related administrative
operations inside containers, such as:

* MTU setting

Link state modification

MAC/IP address assignment

| P address flushing

Route insertion/del etion/replacement

Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS |S and subject to

6 change without notice. All trademarks used herein are property of their respective owners.

https://docs.openshift.com/container-platform/4.3/authentication/managing-security-context-constraints.html
https://docs.openshift.com/container-platform/4.3/authentication/managing-security-context-constraints.html
https://github.com/cri-o/cri-o/blob/master/internal/config/capabilities/capabilities.go

* Control network driver and hardware settings via * ethtool’
This does not include:

» Adding or deleting avirtual interface inside a container. For example, addingaVLAN
interface

* Setting VF device properties

All the administrative operations (except et ht ool) mentioned above that require the
NET_ADMIN capability are already supported on the host by various CNIsin OpenShift.

2.7.3. (Avoid) SYS_ ADMIN

(Avoid) SYS _ADMIN capability is very powerful and overloaded. It allows the application to
perform arange of system administration operations to the host. You should avoid requiring this
capability in your application.

2.7.4.SYS NICE

SYS NICE capahility is required when a CNF is running on a node using the real-time kernel,
asit alows the real-time application to switch to SCHED_FIFO.

2.7.5.SYS PTRACE

SYS PTRACE capahility is required when using Process Namespace Sharing. Thisis used
when processes from one container need to be exposed to another Container.

For example, to send signals, like signal hang up (SIGHUP), from a process in one container to
another process in another container. For more information, see Share Process Namespace
between Containersin a Pod.

2.8. Operationsthat can be executed by OpenShift

The application does not require NET_ADMIN capability to perform the following
administrative operations:
* MTU setting

- For the cluster network, also known as the OVN or OpenShift-SDN network, the MTU is

Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS |S and subject to

change without notice. All trademarks used herein are property of their respective owners. 7

https://kubernetes.io/docs/tasks/configure-pod-container/share-process-namespace/
https://kubernetes.io/docs/tasks/configure-pod-container/share-process-namespace/

8

configured by modifying the manifests generated by OpenShift-installer before deploying
the cluster. For more information, see Installing a cluster on bare metal with network
customizations.

- For the additiona networks managed by the Cluster Network Operator, it can be
configured through the NetworkAttachmentDefinition resources generated by the Cluster
Network Operator. For more information, see Understanding multiple networks.

- For the SR-IOV interfaces managed by the SR-IOV Network Operator. For more
information, see Configuring an SR-IOV network device.

Link state modification

- All thelinks are set to up before attaching it to a pod.

IP/MAC address assignment
- For al networks, the IPP/MAC addressis assigned to the interface during pod creation.

- Multus also allows users to override the IPPMAC address. For more information, see
Specifying Pod-specific addressing and routing options.

Manipulate pod's route table

- By default, the default route of the pod points to the cluster network, with or without the
additional networks. Multus also alows usersto override the default route of the pod. For
more information, see Specifying Pod-specific addressing and routing options.

- Non-default routes can be added to pod’s routing table by various IPAM CNI plugins
during pod creation

SR-IOV VF setting

- Besides the functions aforementioned, the SR-IOV Network Operator supports the
configuration of the following parameters for SR-IOV VFs. For more information, see
Configuring an SR-IOV network attachment.

- vlan

- linkState

- maxTxRate
- minTxRate
- vlanQoS

- gpoofChk

Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS IS and subject to
change without notice. All trademarks used herein are property of their respective owners.

https://docs.openshift.com/container-platform/4.3/installing/installing_bare_metal/installing-bare-metal-network-customizations.html
https://docs.openshift.com/container-platform/4.3/installing/installing_bare_metal/installing-bare-metal-network-customizations.html
https://docs.openshift.com/container-platform/4.3/networking/multiple_networks/understanding-multiple-networks.html
https://docs.openshift.com/container-platform/4.3/networking/hardware_networks/configuring-sriov-device.html
https://docs.openshift.com/container-platform/4.3/networking/multiple_networks/attaching-pod.html#nw-multus-advanced-annotations_attaching-pod
https://docs.openshift.com/container-platform/4.3/networking/multiple_networks/attaching-pod.html#nw-multus-advanced-annotations_attaching-pod
https://docs.openshift.com/container-platform/4.3/networking/hardware_networks/configuring-sriov-net-attach.html

- trust
e Multicast

- In OCP, multicast is supported for both the default interface (OVN or OpenShift-SDN)
and the additional interfaces (macvlan, SR-10V ...). However, multicast is disabled by
default. To enable multicast, see Using multicast and Using high performance multicast.

- If your application works as a multicast source, and you want to utilize the additional
interfaces to carry the multicast traffic, then you do not need the NET_ADMIN
capability. However, you must follow the instructions in Using high performance
multicast to set the correct multicast route in your pod’s routing table.

2.9. Operationsthat cannot be executed by OpenShift

All the CNI plugins are only invoked during pod creation and deletion. If your CNF wantsto
perform any operations mentioned in the above chapter at runtime, the NET_ADMIN capability
isrequired.

There are some other functionalities that are not currently supported by any of the OpenShift
components, which also require NET_ADMIN capability:

e Link state modification at runtime

IP/IMAC modification at runtime

Manipulate pod's route table or firewall rules at runtime

SRIOV VF setting at runtime

Netlink configuration

- For example, ‘ethtool’ can be used to configure things like rxvlan, txvlan, gso, and tso.

Multicast

- If your application works as a receiving member of IGMP groups, you need to specify the
NET_ADMIN capability in the pod manifest. So that the app is allowed to assign
multicast addresses to the pod interface and join an IGMP group.

Set SO_PRIORITY to a socket to manipulate the 802.1p priority in ethernet frames

Set IP_TOS to a socket to manipulate the DSCP value of | P packets

Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS |S and subject to

change without notice. All trademarks used herein are property of their respective owners. 9

https://docs.openshift.com/container-platform/4.3/networking/openshift_sdn/using-multicast.html
https://docs.openshift.com/container-platform/4.3/networking/hardware_networks/using-sriov-multicast.html
https://docs.openshift.com/container-platform/4.3/networking/hardware_networks/using-sriov-multicast.html
https://docs.openshift.com/container-platform/4.3/networking/hardware_networks/using-sriov-multicast.html

2.10. Analyzing Your Application

To find out which capabilities the application needs, Red Hat developed a SystemTap script
(container_check.stp). With this tool, the CNF developer finds out what capabilities an
application requiresto run in a container. It also shows the syscalls which are invoked.

Another tool iscapabl e whichis part of the BCC tools. You caninstall it on RHEL8 with dnf
install bcc.

2.11. Capabilities Example

Hereis an example of how to find out the capabilities that an application needs. ‘testpmd’ isa
DPDK based layer-2 forwarding application. It needs the CAP_IPC _LOCK to allocate the
hugepage memory.

1..Usecont ai ner _check. st p. We can see CAP_IPC_LOCK and CAP_SYS RAWIO are
requested by t est pnd and the relevant syscalls.

10 Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS IS and subject to
change without notice. All trademarks used herein are property of their respective owners.

$ /usr/share/systentap/ exanpl es/ profiling/container_check.stp -c

"testpnd -1 1-2 -w 0000:00:09.0 -- -a --portnmask=0x8 --nb-cores=1'
[...]
capabilities used by executabl es
execut abl e: prob capability
t est pnd: cap_i pc_Il ock
t est pnd: cap_sys_raw o

capabilities used by syscalls

execut abl e, syscal | (capability) : count
t est pnd, m ockal | (cap_ipc_lock) : 1
t est pnd, map (cap_ipc_lock) : 710
t est pnd, open (cap_sys_rawio) : 1
test pnd, iopl (cap_sys_rawio) : 1

forbi dden syscalls
execut abl e, syscal | : count

failed syscalls

execut abl e, syscal |l = errno: count

eal -intr-thread, epol |l _wait = El NTR: 1
| core-slave- 2, read = : 1
rte_np_handl e, recvnsg = : 1
st api o, = El NTR 1

st api o, execve = ENCENT: 3

st api o, rt_sigsuspend = : 1

test pnd, flock = EAGAI N 5
test pnd, stat = ENOENT: 10

t est pnd, nkdir = EEXI ST: 2

t est pnd, readlink = ENCENT: 3

t est pnd, access = ENOENT: 1141

t est pnd, openat = ENCENT: 1
t est pnd, open = ENOENT: 13

2.. Use capabl e command

$ /usr/share/ bcc/tool s/ capabl e

3.. Start the t est pnd application from another terminal, and send some test traffic to it.

$ testpnd -1 18-19 -w 0000:01:00.0 -- -a --portmask=0x1 --nb-cores=1

Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS |S and subject to

change without notice. All trademarks used herein are property of their respective owners. 1

4.. Check the output of the capabl e command. Aswe can see CAP_IPC_LOCK was requested
for running t est pnd.

...]

00:41:58 0 3591 3591 tetspn 14 CAP_IPC LOCK 1
00:41:58 0 3591 3591 tetspnd 14 CAP_IPC LOCK 1
00:41:58 0 3591 3591 tetspnd 14 CAP_IPC LOCK 1
00:41:58 0 3591 3591 tetspnd 14 CAP_IPC LOCK 1
00:41:58 0 3591 3591 tetspnd 14 CAP_IPC LOCK 1
00:41:58 0 3591 3591 tetspnd 14 CAP_IPC LOCK 1
00:41:58 0 3591 3591 tetspnd 14 CAP_IPC LOCK 1
00:41:58 0 3591 3591 tetspnd 14 CAP_IPC LOCK 1
00:41:58 0 3591 3591 tetspnd 14 CAP_IPC LOCK 1
00:41:58 0 3591 3591 tetspn 14 CAP_IPC LOCK 1
00:41:58 0 3591 3591 tetspnd 14 CAP_IPC LOCK 1
00:41:58 0 3591 3591 tetspn 14 CAP_IPC LOCK 1
00:41:58 0 3591 3591 tetspnd 14 CAP_IPC LOCK 1

[...]

5.. Also, wecantry torunt est prd without the CAP_IPC_LOCK with capsh. Now we can
see that the hugepage memory cannot be allocated.

12 Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS |S and subject to

change without notice. All trademarks used herein are property of their respective owners.

$ capsh --drop=cap_ipc_lock -- -c testpnd -I 18-19 -w 0000:01:00.0 --
-a --portnmask=0x1 --nb-cores=1

EAL: Detected 24 |core(s)

EAL: Detected 2 NUMA nodes

EAL: Milti-process socket /var/run/dpdk/rte/ np_socket

EAL: No free hugepages reported i n hugepages-1048576kB

EAL: Probi ng VFI O support. ..

EAL: VFI O support initialized

EAL: PCl device 0000:01:00.0 on NUVA socket O

EAL: probe driver: 8086:10fb net i xgbe

EAL: using |OVWU type 1 (Type 1)

EAL: lgnore mapping | O port bar(2)

EAL: PCl device 0000:01:00.1 on NUVA socket O

EAL: probe driver: 8086:10fb net i xgbe

EAL: PCl device 0000:07:00.0 on NUVA socket O

EAL: probe driver: 8086: 1521 net_el000_igb

EAL: PCl device 0000:07:00.1 on NUVA socket O

EAL: probe driver: 8086: 1521 net_el000_i gb

EAL: cannot set up DVA remapping, error 12 (Cannot allocate nenory)
testpnmd: mockall () failed with error "Cannot allocate nmenory"
testpnd: create a new nbuf pool <nmbuf pool socket 0>: n=331456,

si ze=2176, socket =0

testpnd: preferred nenpool ops selected: ring np_nt

EAL: cannot set up DVA remapping, error 12 (Cannot all ocate nenory)
testpnd: create a new nmbuf pool <nmbuf pool socket 1>: n=331456,

si ze=2176, socket=1

testpnd: preferred nenpool ops selected: ring np_nt

EAL: cannot set up DVA remapping, error 12 (Cannot allocate nmenory)
EAL: cannot set up DVA remapping, error 12 (Cannot allocate nmenory)

Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS |S and subject to

change without notice. All trademarks used herein are property of their respective owners.

13

Chapter 3. CNF Best Practice

The design and implementation of CNFs may be varied. However, from the platform networking
perspective, we can put them into the following categories. Here, we have some
recommendations for each kind of application on the capabilitiesit requests.

3.1. Control Plane and M anagement CNFs

Vocabulary

CNF Cloud-native Network Function
CNI Container Network Interface
DPDK Data Plane Devel opment Kit
DSCP Differentiated Services Code Point
IP Internet Protocol

MTU Maximum Transmission Unit
OVN Open Virtual Network

PF Physical Function

PMD Poll Mode Driver

QoS Quality of Service

RHEL Red Hat Enterprise Linux
SR-10V Single Root /O Virtualization
VLAN Virtual Local Area Network
VF Virtual Function

VPP Vector Packet Processor

14 Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS IS and subject to
change without notice. All trademarks used herein are property of their respective owners.

Chapter 4. Cloud-native CNFs- SCC Implementation

There are three Security Context Constraint (SCC) profiles that may be utilized by OpenShift
Container Platform. All Apps are expected to fit in Category 1 employing the default SCC
profile. Apps matching Category 2 or Category 3 require exception approval. Further details are
listed in the following sections.

4.1. CNFsthat do not require advanced networking features
(Category 1)
These kind of CNFs:

1. Usethe default CNI (OVN) network interface.

2. Do not request ‘NET_ADMIN’ or ‘NET_RAW’ for advanced networking functions.

Recommended SCC definition (default):

Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS |S and subject to

change without notice. All trademarks used herein are property of their respective owners. 15

ki nd: SecurityContextConstraints
api Version: security.openshift.io/vl
nmet adat a:
nanme: cnf-catal og-1
users: []
groups: []
priority: null
al | owHost Di r Vol unePl ugi n: fal se
al l owHost I PC:. fal se
al | owHost Net wor k: fal se
al | owHost PI D: fal se
al | owHost Ports: false
al | owPrivil egeEscal ation: true
al | owPrivil egedCont ai ner: fal se
al | onedCapabi lities: null
def aul t AddCapabilities: null
requi redDropCapabi lities:
- KILL
- MKNOD
- SETU D
- SETA D
- NET_RAVD
fsG oup:
type: Mist RunAs
readOnl yRoot Fi | esystem fal se
runAsUser:
type: Mist RunAsRange
seLi nuxCont ext :
type: Mist RunAs
suppl emrent al G oups:
type: RunAsAny
vol unes:
- configMap
- downwar dAPI
- enptyDir
- persistent Vol uneC ai m
- projected
- secret

4.2. CNFsthat require advanced networking features (Category 2)

CNFswith the following characteristics may fall into this category:

1. Manipulate the low-level protocol flags, such asthe 802.1p priority, the VLAN tag, and the
DSCP value.

16 Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS IS and subject to
change without notice. All trademarks used herein are property of their respective owners.

2. Manipulate the interface IP addresses, the routing table, or the nftables on-the-fly.

3. Process Ethernet packets.
These kind of CNFs:

1. Use Macvlan interface to send and receive Ethernet packets
2. Request CAP_NET_RAW for creating raw sockets
3. Request CAP_NET_ADMIN for:

a Modifying the interface | P address on-the-fly

b. Manipulating the routing table on-the-fly

c. Manipulating the iptables rules on-the-fly

d. Setting the packet DSCP value

Recommended SCC definition:

Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS |S and subject to

change without notice. All trademarks used herein are property of their respective owners. 7

ki nd: SecurityContextConstraints
api Version: security.openshift.io/vl
nmet adat a:
nanme: cnf-catal og-2
users: []
groups: []
priority: null
al | owHost Di r Vol unePl ugi n: fal se
al l owHost I PC:. fal se
al | owHost Net wor k: fal se
al | owHost PI D: fal se
al | owHost Ports: false
al | owPrivil egeEscal ation: true
al | owPrivil egedCont ai ner: fal se
al | owedCapabilities: [NET_ADM N, NET_RAW
def aul t AddCapabilities: null
requi redDropCapabi lities:
- KILL
- MKNOD
- SETU D
- SETA D
fsG oup:
type: Mist RunAs
readOnl yRoot Fi | esystem fal se
runAsUser :
type: Mist RunAsRange
seLi nuxCont ext :
type: Mist RunAs
suppl erment al Gr oups:
type: RunAsAny
vol unes:
- confighvap
- downwar dAPI
- enptyDir
- persistent Vol uneC ai m
- projected
- secret

4.3. User-Plane CNFs (Category 3)

A CNF which handles user-plane traffic or latency-sensitive payloads at line rate falls into this
category, such as load balancing, routing, deep packet inspection, and so on. Some of these CNFs
may also need to process the packets at alower level.

These kind of CNFs:

18 Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS IS and subject to
change without notice. All trademarks used herein are property of their respective owners.

1. Use SR-I0OV interfaces.

2. Fully or partially bypass the kernel networking stack with userspace networking
technologies, like DPDK, F-stack, VPP, and OpenFastPath. A userspace networking stack
can not only improve the performance but aso reduce the need for the‘CAP_NET_ADMIN’
and ‘CAP_NET_RAW'.

For those using Mellanox devices, those capabilities are requested if the
NOTE application needs to configure the device(CAP_NET_ADMIN) and/or allocate
raw ethernet queue through kernel drive(CAP_NET _RAW)

As'CAP_IPC_LOCK’ is mandatory for allocating HugePage memory, this capability is granted
to the DPDK-based applications. Additionally, if the workload is latency-sensitive, and needs the
determinacy provided by the real-time kernel, the ‘CAP_SYS NICE’ would also be required.

The following is an example pod manifest of a DPDK application. For more information, see
Using virtual functions (VFs) with DPDK and RDMA modes.

Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS |S and subject to

change without notice. All trademarks used herein are property of their respective owners. 9

https://docs.openshift.com/container-platform/4.4/networking/hardware_networks/using-dpdk-and-rdma.html

api Version: vl
ki nd: Pod
nmet adat a:
nane: dpdk-app
namespace: <target_nanmespace>
annot at i ons:
k8s.vl.cni.cncf.io/ networks: dpdk-network
spec:
cont ai ners:
- name: testpnd
i mge: <DPDK_i mage>
securityCont ext:
capabilities:
add: ["IPC_LOCK"]
vol uneMount s:
- nmount Pat h: /dev/ hugepages
nane: hugepage
resources:
limts:
openshift.io/m xnics: "1"
nenory: "1G"
cpu: "4"
hugepages-1G : "4G "
requests:
++openshift.io/mxnics: "1"
menory: "1G "

cpu: "4"
hugepages-1G : "4G "
comand: ["sleep", "infinity"]
vol unes:
- name: hugepage
enptyDir:

medi um HugePages

Recommended SCC definition:

20 Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS IS and subject to
change without notice. All trademarks used herein are property of their respective owners.

ki nd: SecurityContextConstraints
api Version: security.openshift.io/vl
nmet adat a:
nanme: cnf-catal og-3
users: []
groups: []
priority: null
al | owHost Di r Vol unePl ugi n: fal se
al l owHost I PC:. fal se
al | owHost Net wor k: fal se
al | owHost PI D: fal se
al | owHost Ports: false
al | owPrivil egeEscal ation: true
al | owPrivil egedCont ai ner: fal se
al | owedCapabilities: [IPC LOCK, NET_ADM N, NET_RAW
def aul t AddCapabilities: null
requi redDropCapabi lities:
- KILL
- MKNOD
- SETU D
- SETA D
fsG oup:
type: Mist RunAs
readOnl yRoot Fi | esystem fal se
runAsUser :
type: Mist RunAsRange
seLi nuxCont ext :
type: Mist RunAs
suppl erment al Gr oups:
type: RunAsAny
vol unes:
- confighvap
- downwar dAPI
- enptyDir
- persistent Vol uneC ai m
- projected
- secret

Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS |S and subject to

change without notice. All trademarks used herein are property of their respective owners. 2l

Chapter 5. CNF Expectations and Permissions

5.1. Cloud Native Design Best Practices

Cloud-native applications are devel oped as |oosely-coupled, well-behaved manageable
microservices running in containers managed by a container orchestration engine, such as
kubernetes.

The following sections highlight some key principles of cloud-native application design.

Single Purpose with M essaging I nterface

A container addresses a single purpose with awell-defined (typically RESTful API) messaging
interface. The motivation here isthat such a container image is more reusable and more
replaceable/upgradeable.

High Observability

A container must provide APIs for the platform to observe the container health and act
accordingly. These APIsinclude health checks (liveness and readiness), logging to stderr and
stdout for log aggregation (by tools such as Logstash or Filebeat), and integrate with tracing and
metrics-gathering libraries (such as Prometheus or Metricbeat).

L ifecycle Confor mance

A container must receive important events from the platform and conform/react to these events
properly. For example, a container catches SIGTERM or SIGKILL from the platform and shuts
down as quickly as possible. Other typically important events from the platform are PostStart to
initialize before servicing requests and PreStop to release resources cleanly before shutting
down.

I mage lmmutability

Container images are meant to be immutable, that is, customized images for different
environments are typically not built. Instead, an external means for storing and retrieving
configurations that vary across environments for the container is used.

Additionally, the container image does not dynamically install additional packages at runtime.

Process Disposability

Containers are as ephemeral as possible, and ready to be replaced by another container instance
at any point in time. There are many reasons to replace a container, such asfailing a health
check, scaling down the application, migrating the containers to a different host, platform

2 Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS IS and subject to
change without notice. All trademarks used herein are property of their respective owners.

resource starvation, or another issue.

This means that containerized applications must keep their state externalized or distributed and
redundant. To store files or block level data, persistent volume claims are used. For information
such as user sessions, use of an external, low-latency, key-value store such asredisis used.

Process disposability also requires that the application be quick in starting up and shutting down,
and even be ready for a sudden, complete hardware failure.

Another helpful practice in implementing this principleis to create small containers. Containers
in cloud-native environments may be automatically scheduled and started on different hosts.
Having smaller containers leads to quicker start-up times because before being restarted,
containers need to be physically copied to the host system.

A corollary of this practiceisto ‘retry instead of crashing’. Thisiswhen one service in your
application depends on another service, it does not crash when the other service is unreachable.
For example, your APl service is starting up and detects the database is unreachable. Instead of
failing and refusing to start, you design it to retry the connection. While the database connection
isdown, the API can respond with a 503 status code, telling the clients that the serviceis
currently unavailable. This practice may aready be followed by applications, but if you are
working in a containerized environment where instances are disposable, then the need for it
becomes more obvious.

Also related to this, by default containers are launched with shared images using COW
filesystems which only exist aslong as the container exists. Mounting Persistent Volume Claims
enables a container to have persistent physical storage. Clearly defining the abstraction for what
storage is persisted promotes the idea that instances are disposable.

5.2. High Level CNF Expectations

* CNFs should be built to be cloud-native

 Containers never run as root (uid=0). Applications that require elevated privileges require an
exception with HQ Planning

 Containers run with the minimal set of permissions required. Any pods that require elevated
privileges, also require a security review that provides an analysis of the special permissions
required. Any exceptions should be provided. Avoid Privileged Pods. If Privileged Pods are
required, the CNF developer should work with the planning department, security risk
management, and Red Hat to determine acceptability of privilege and/or modifications to

Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS |S and subject to

change without notice. All trademarks used herein are property of their respective owners. 23

pods such that elevated privilege is not required.
» Usethe main CNI for all traffic

» CNFs should leverage service mesh provided by the platform for internal and external
communication

» CNFsshould leverage platform service mesh for mTLS with other applications
 All images/helm charts must be packaged by the vendor and hosted on the image registry

» Naming and Labelling standards for all kubernetes objects (for example, Pods and Services)
should be provided

* CNFs should employ N+k redundancy models
* CNFs must define their pod affinity/anti-affinity rules

¢ Instantiation of CNF (viaHelm chart or Operators or otherwise) should result in afully-
functional CNF ready to serve traffic, without requiring any post-instantiation configuration
of system parameters

» CNFs should implement service resilience at the application layer and not rely on individual
compute availability/stability

» CNFs should decouple application configuration from Pods, to allow dynamic configuration
updates

» CNFs should support elasticity with dynamic scale up/down using kubernetes-native
constructs, such as ReplicaSets.

* CNFs should support canary upgrades employing the platform Service Mesh

* CNFs should self-recover from common failures like pod failure, host failure, and network
failure. Kubernetes-native mechanisms, such as health-checks (Liveness, Readiness and
Startup Probes) should be employed at a minimum.

5.3. Platform Restrictions

* CNFsmay not deploy Nodeports
* CNFsmay not use host networking

» Namespace creation is performed by the platform team and may not be created by the CNFs
deployment method (Helm / Operator)

» CNFs may not perform Role creation

o4 Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS IS and subject to
change without notice. All trademarks used herein are property of their respective owners.

* CNFsmay not perform Rolebinding creation

* CNFsmay not have Cluster Roles

» CNFsare not authorized to bring their own CNI
* CNFsmay not deploy Daemonsets

» CNFs may not modify the platform in any way

Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS |S and subject to

change without notice. All trademarks used herein are property of their respective owners. 25

Chapter 6. OpenShift Platform

By default, OpenShift networking utilizes the host "baremetal” network for ingress/egress of the
cluster.

Certified Operator Build Guide - Guidelines on how to build an Operator that meets the Red Hat
certification criteria.

Partner Guide for OpenShift and Container Certification - Step-by-step instructions for partners
on how to certify their images and operators.

OpenShift Operator Badge Guide - Containers and Operators tests.

% Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS IS and subject to
change without notice. All trademarks used herein are property of their respective owners.

https://redhat-connect.gitbook.io/certified-operator-guide/
https://redhat-connect.gitbook.io/partner-guide-for-red-hat-openshift-and-container/
https://redhat-connect.gitbook.io/openshift-badges/badges/cloud-native-network-functions-cnf/overview

Chapter 7. Software Core/Edge

The deployment consists of the CaaS (Container as a Service) and PaaS (Platform as a Service)
functions. Details of the Stack components are covered in the subsequent sections. The Stack
components are subject to change over the next 12 months as further evaluation and testing is
conducted in the HQP Lab with select 5G CNFs.

7.1. HElm v3

Helm v3 is a serverless mechanism for defining templates that describe a complete kubernetes
application. This allows atemplate to be built for an application and site/deployment-specific
values to be provided as input to the template when being pushed to a cluster, such that different
configurations can be made in differnet locations. It is roughly analogous to HEAT templatesin
the OpenStack environment.

For more information, see Getting started with helm on OpenShift.

7.2. Kubernetes

Kubernetes is an open source container orchestration suite of software that is API- driven with a
datastore keeping state of the deployments resident on the cluster.

The Kubernetes API is the mechanism by which applications and people and applications
interact with the cluster. There are several waysto do this, including viathe kubectl or oc CLI
tools, viaweb based Uls or interacting directly with the API using tools such as curl, or the
SDKs can be used to build your own tools.

When interacting with the API, this can be done in at least one of two ways. If the application, or
person is external to the cluster, the APIs can be accessed externally. If the application or person
ison the cluster, or inside the cluster, one can access the cluster by hitting the Kubernetes Service
Resource directly, thereby bypassing the need to exit the cluster and come back in.

7.3. CNI —OVN

OVN isthe default pod network CNI plugin for OpenShift and is supported directly by Red Hat.
OVN isRed Hat's CNI for pods. It is a Geneve-based overlay that requires L3 reachability
between the host nodes. This L3 reachability can be over L2 or a pre-existing overlay network.
OpenShift’'s OV N forwarding is based on flow rules and implemented with nftables on the host

Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS |S and subject to

change without notice. All trademarks used herein are property of their respective owners. 21

https://docs.openshift.com/container-platform/4.7/cli_reference/helm_cli/getting-started-with-helm-on-openshift-container-platform.html#installing-a-helm-chart-on-an-openshift-cluster_getting-started-with-helm-on-openshift

OS CNI POD.

7.4. Container storage (CSl)

Pod Volumes are supported, vialocal storage and the CSlI, for persistent volumes. Local storage
istruly ephemeral storage, itislocal only to the physical node that apod is running on, and is
lost in the event that a pod is killed and recreated. If a pod requires persistent storage the CSI can
be used via kubernetes native primitives, persistentVolume (PV) and persistentVolumeClaim
(PVC), to get persistent storage, such as an NFS share. For example, viathe CS| backed by
NetApp Trident.

When using storage with Kubernetes, you can leverage storage classes. These allow you to
classify different storage by capabilities. For example, storage backed by fast SSD may be
assigned to a different class than that backed by rotational disk. Volumes can then be requested
based on the parameters of the storage they wish to use.

Network Functions clear persistent storage by deleting their PVs when removing their
application from a cluster.

For more information, see Persistent Storage.

7.5. Block storage

OpenShift Container Platform can provision raw block volumes. These volumes do not have a
file system, and can provide performance benefits for applications that either write to the disk
directly or implement their own storage service.

For more information, see Block volume storage support.

7.6. Object storage

Object storage may be located at core locations. Access to object storage may be possible via S3
and Swift API, accessed viaHAProxy Load Balancer over HTTPS protocol. Clients accessing
object storage may route viathe CNI ethO network through the load balancer, and across the
WAN to the object storage endpoints they are assigned during onboarding.

28 Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS IS and subject to
change without notice. All trademarks used herein are property of their respective owners.

https://docs.openshift.com/container-platform/4.4/storage/container_storage_interface/persistent-storage-csi.html
https://docs.openshift.com/container-platform/4.4/storage/understanding-persistent-storage.html#block-volume-support_understanding-persistent-storage

7.7. Container Runtime

Openshift uses CRI-O as a CRI interface for Kubernetes. CRI-O manages runC for container
image execution. CRI-O is an open-source container engine that provides a stable, performant
platform for running OCI compatible runtimes. CRI-O is developed, tested and released in
tandem with Kubernetes major and minor releases. Images are OCI compliant. Images are
recommended to be built using Red Hat's open Universal Base Image. For more information, see
Universal Base Image in the following sections.

For more information, see CRI-O and Read-only containers and CRI-O.
This environment is maintained through the open source tools:

* runc
* skopeo

e buildah
* podman

* Crio
7.8. CPU Manager / Pinning

The OpenShift Container Platform can use the Kubernetes CPU Manager to support CPU
pinning for applications.

7.9. Host OS

OpenShift Container Platform will run Red Hat Enterprise Linux CoreOS (RHCOS) in abare
metal environment. There is no hypervisor layer between the containers and the host OS.
RHCOS is the next generation container operating system. RCHOS is part of the OpenShift
Container Platform and is used as the OS for the Control plane, and can is the default for worker
nodes. RHCOS is based on RHEL, has some immutability, leverages the CRI-O runtime,
contains container tools, and is updated through the Machine Config Operator (MCO).

The controlled immutability nature of RHCOS does not support installing RPMs or additional
packages in the traditional way. Some 3rd party services or functionalities need to run as agents
on nodes of the cluster.

Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS |S and subject to

change without notice. All trademarks used herein are property of their respective owners. 29

https://blog.openshift.com/add-a-layer-of-security-to-openshift-kubernetes-with-cri-o-in-read-only-mode/
https://github.com/cri-o/cri-o/blob/master/docs/crio.8.md

For more information, see Red Hat Enterprise Linux CoreOS | Architecture | OpenShift
Container Platform 4.7.

20 Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS IS and subject to
change without notice. All trademarks used herein are property of their respective owners.

https://docs.openshift.com/container-platform/4.7/architecture/architecture-rhcos.html
https://docs.openshift.com/container-platform/4.7/architecture/architecture-rhcos.html

Chapter 8. PaaS Core/Edge

8.1. Certificate M anagement

Certificate Management may be obtained through the platform via the network. A CSR may be
generated to get a certificate signed via Citadel which should provide an ICA certificate.
Platform certificate rotation on behalf of an application may happen.

8.2. Distributed Tracing

Distributed L7 tracing may be supported by the platform via a Service Mesh with Jaeger asthe
Ul to the trace data.

8.3. Pod Security

SELinux is aways enabled within the OpenShift Container Platform and is used to enforce
syscalls that containers make. In addition, Kubernetes has another native function called pod
security policies.

8.4. L oad Balancer/Service Proxy

The default OpenShift load balancer, metalLB, can be used or any certified load balancer on Red

Hat Openshift can be used. For example,F5 SPK or F5 BiglP. Applications must use the Load
Balancer to get traffic into and out of the pod network.

8.5. CI/CD Framework

Applications should target a Cl/CD approach for deployment and validation.

8.6. Kubernetes API Versions

The OpenShift Container Platform supports the full Kubernetes APIs, as well as additional API
calls that are OpenShift specific.

For more information, see Rest API.

Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS IS and subject to
change without notice. All trademarks used herein are property of their respective owners.

31

https://docs.openshift.com/container-platform/4.7/rest_api/index.html

Chapter 9. Pod Per missions

The default permissions of the platform should not permit pods to run as root. Pod restrictions
are enforced by SCC within the OpenShift platform. For more information, see Managing
Security Context Contraints.

Pods execute on worker nodes by default, and admitted to the cluster with the "restricted” SCC.
The "restricted" SCC:

 Ensures that no containers within the pod can run with the allowPrivilegedContainer flag set.

Ensures that pods cannot mount host directory volumes.

Requires that a pod run as a user in a pre-allocated range of UIDs from the namespace
annotation.

» Requiresthat a pod run with a pre-allocated MCS label.

 Allows pods to use any supplemental group.
Any pods requiring elevated privileges must document the required capabilities driven by
application syscalls and an exception process to validate the requirements must occur. Upon

approval of an exception, a custom SCC can be created with the specific permissions needed, and
made available to the CNF.

32 Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS IS and subject to
change without notice. All trademarks used herein are property of their respective owners.

https://docs.OpenShift.com/container-platform/4.7/authentication/managing-security-context-constraints.html
https://docs.OpenShift.com/container-platform/4.7/authentication/managing-security-context-constraints.html

Chapter 10. OpenShift Best Practices

10.1. Logging

The OpenShift Container Platform supports logging from containers and forwards those logs
separately from the platform logging to a centralized logging repository. Logs may be forwarded
based on the Tenant Namespace identifier.

 Containers are expected to write logs to stdout

* Requires vendor to follow pod/container naming standards

 Logsare forwarded to a centralized storage location

* Logs can be parsed so that specific vendor logs can be sent back to the CNF, if required

* Requires vendor to provide svc/fqdn

Logs may be sent back logs to the matching namespace using the below tag format:
- =wvendor-function-000.logs — Logs for namespace 000
- =wvendor-function-001.logs - Logs for namespace 001
- pod in the tenant namespace for receiving these logs:

- must write any logs to atraditional log file on PV (disk) handling log rotation itself
(either by using aframework or the traditional logrotate pattern)

- must not write any logs to default stdout/stderr container pipes to avoid getting back
into the log stream (avoiding afeedback loop). In other words, that container must
redirect stdout/stderr somewhere other than the default for that container

Log messages are aggregated as a JSON document after being normalized to add metadata. An
example of atypical log message:

Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS |S and subject to

change without notice. All trademarks used herein are property of their respective owners. 33

{

"docker" : {
"container_id" : "a2e6d10494f 396a45e..."
}
"kubernetes" : {
"contai ner_nanme" : "rhel-logtest",
"nanespace_nane" : "l ogfl atx",
"pod_nane" : "rhel-logtest-987vr",
"cont ai ner _i mage" : "quay.io/openshift/ocp-logtest:|latest”,
"container_image_id" : "docker.io/nffi....,
"pod_id" : "67667d28-13f e-4c89-aad44-06936279c399"
"host" : "ip-10-0-153-186. us-east-2.conpute.internal"”
"l abel s" : {
"run" : "rhel-logtest",
"test" : "rhel-logtest"
}
"master_url" : "https://kubernetes. default.svc",
"nanespace_i d" : "e8fb5826-94f 7- 48a6- ae92- 354e4b779008"
}
"message" : "2020-03-03 11:44:51,996 - SVTLogger - |NFO'
"level" : "unknown",
"host nane” : "ip-10-0-153-186. us-east-2.conpute.internal”
"pi peline_netadata" : {
"collector" : {
"ipaddr4" : "10.0.153.186"
"input name” : "fluent-plugin-systend”,
"name" : "fluentd",
"received_at" : "2020-03-03T11:44:52.189331+00: 00",
"version" : "1.7.4 1.6.0"
}
}
"@inmestamp" : "2020-03-03T11: 44:51. 996384+00: 00"
}

10.2. Monitoring

Network Functions are expected to bring their own metrics collection functions, for example,
Prometheus, for their application-specific metrics. This metrics collector is not expected to, nor
be ableto, poll platform-level metric data. Network Functions may support exposing their
Prometheus collection functions via PromQL interfaces to existing OSS systems.

Control Plane (infrastructure) metrics are collected by the platform in a separate Prometheus
instance.

2 Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS IS and subject to
change without notice. All trademarks used herein are property of their respective owners.

10.3. CPU Allocation

It isimportant to note that when the OpenShift scheduler is placing pods, it first reviews the Pod
CPU “Request” and schedulesit if there is a node that meets the requirements. It then imposes
the CPU “Limits’ to ensure the pod does not consume more than the intended allocation. The
limit can never be lower than the request.

10.3.1. NUMA Configuration

OpenShift provides atopology manager which leverages the CPU manager and Device manager
to help associate processes to CPUs. The topology manager handles NUMA affinity. This feature
isavailable as of OpenShift 4.6.

For more information, and some examples on how to leverage the topology manager, and create
workloads that work in real time, see Using Topology Manager and Creating a workload that
works in real-time.

10.4. Memory Allocation

Regarding memory allocation, there are a couple of considerations.

1. How much of the platform is OpenShift itself using? and

2. How much isleft over to alocate for the applications running on OpenShift?

Once it has been determined how much memory is left over for the applications, quotas can be
applied which specify both the requested amount of memory and the limits. In the case of where
amemory request has been specified, OpenShift does not schedule the pod unless the amount of
memory required to launch it is available.

In the case of alimit being specified, OpenShift does not allocate more memory to the
application than the limit provides. It isimportant to note that when the OpenShift scheduler is
placing pods, it first reviews the Pod memory “Request” and schedulesit if there is a node that
meets the requirements. It then imposes the memory “Limits’ to ensure the pod does not
consume more than the intended allocation. The limit can never be lower than the request.

Vendors must supply quotas per project so that nodes can be sized appropriately and clusters are
able to support the needs of vendor applications. For more information, see Resource quotas per
project

Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS |S and subject to

change without notice. All trademarks used herein are property of their respective owners. 35

https://docs.OpenShift.com/container-platform/4.7/scalability_and_performance/using-topology-manager.html
https://docs.openshift.com/container-platform/4.7/scalability_and_performance/cnf-performance-addon-operator-for-low-latency-nodes.html#performance-addon-operator-creating-workload-that-works-in-real-time_cnf-master
https://docs.openshift.com/container-platform/4.7/scalability_and_performance/cnf-performance-addon-operator-for-low-latency-nodes.html#performance-addon-operator-creating-workload-that-works-in-real-time_cnf-master
https://docs.openshift.com/container-platform/4.7/applications/quotas/quotas-setting-per-project.html
https://docs.openshift.com/container-platform/4.7/applications/quotas/quotas-setting-per-project.html

10.5. Affinity / Anti-affinity

With OpensShift Container Platform, pod affinity and pod anti-affinity allow you to constrain
which nodes your pod is eligible to be scheduled on based on the key/value labels on other pods.
There are two types of affinity rules, required and preferred. Required rules must be met,
whereas preferred rules are best effort.

These pod affinity / anti-affinity rules are set in the pod specification as matchExpressionsto a
|abel Selector. See the following link for examples and more information. See the following
example for more information here:

api Version: vl
ki nd: Pod
net adat a:
name: w th-pod-affinity
spec:
affinity:
podAffinity:
requi redDur i ngSchedul i ngl gnor edDur i ngExecut i on:
- | abel Sel ector:
mat chExpr essi ons:
- key: security
operator: In
val ues:
- Sl
t opol ogyKey: fail ure-donain. beta. kubernetes.i o/ zone
cont ai ners:
- name: with-pod-affinity
i mage: quay.i o/ ocpqge/ hell o-pod

For more information, see Nodes scheduler pod affinity.

10.6. Taintsand Toler ations

Taints and tolerations allow the Node to control which Pods are (or are not) scheduled on them.
A taint allows a node to refuse a pod to be scheduled, unless that pod has a matching toleration.

You apply taints to a node through the node specification (NodeSpec) and apply tolerationsto a
pod through the pod specification (PodSpec). A taint on a node instructs the node to repel all
pods that do not tolerate the taint.

Taints and tolerations consist of a key, value, and effect. An operator allows you to leave one of

36 Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS |S and subject to
change without notice. All trademarks used herein are property of their respective owners.

https://docs.openshift.com/container-platform/4.7/nodes/scheduling/nodes-scheduler-pod-affinity.html#nodes-scheduler-pod-affinity

these parameters empty.

It is possible to utilize taints and tolerations to allow pods to be rescheduled and moved from
nodes that are in need of maintenance. Pods may be forcibly ejected from nodes to perform
necessary maintenance. Do not apply tolerations for NoExecute, PreferNoSchedule, and
NoSchedule.

For more information, see Controlling pod placement using node taints.

10.7. Requests/ Limits

Requests and limits provide away for a CNF devel oper to ensure they have adequate resources
available to run the application. Requests can be made for storage, memory, CPU and so on.
These requests and limits can be enforced by quotas. The production platform may utilize quotas
as away to enforce requests and limits.

For more information, see Resource quotas per project.

It is possible to overcommit node resources in development environments. Keep in mind though,
that a node can be overcommitted which can affect the strategy of request / limit implementation.
For example, when you need guaranteed capacity, use quotas to enforce and in a devel opment
environment, you can overcommit where atrade-off of guaranteed performance for capacity is
acceptable. Overcommitment can be done on a project, node or cluster level.

For more information, see Configuring your cluster to place pods on overcommitted nodes.

10.8. Pods

10.8.1. No naked pods

Do not use naked pods, that is, pods not bound to a ReplicaSet or Deployment. Naked pods are
not rescheduled in the event of anode failure.

10.8.2. Image tagging

Animagetag isalabel applied to a container image in arepository that distinguishes a specific
image from other images. Image tags may be used to categorize images as latest, stable,
development and by versions within those two categories. This allows the administrator to be
specific when declaring which image to test, or which image to run in production.

Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS |S and subject to

change without notice. All trademarks used herein are property of their respective owners. 87

https://docs.openshift.com/container-platform/4.7/nodes/scheduling/nodes-scheduler-taints-tolerations.html
https://docs.openshift.com/container-platform/4.7/applications/quotas/quotas-setting-per-project.html
https://docs.openshift.com/container-platform/4.7/nodes/clusters/nodes-cluster-overcommit.html

For more information, see Tagging images.
10.8.3. One process per container

OpenShift organizes workloads into pods. Pods are the smallest unit of aworkload that
Kubernetes understands. Within pods, one can have one or more containers. Containers are
essentially composed of the runtime that is required to launch and run a process.

Each container should run only one process. Different processes should always be split between
containers, and where possible also separated into different pods. This can help in a number of
ways, such as troubleshooting, upgrades, and more efficient scaling.

However, OpenShift does support running multiple containers per pod. This can be useful if parts
of the application need to share namespaces, like networking and storage resources. Additionally,
there are other models like launching init containers and sidecar containers, which may justify
running multiple containersin a single pod.

Applications that utilize service mesh have an additional container injected into their pods to
proxy workload traffic.

For more information, see Using pods.
10.8.4. init containers

Init containers can be used for running tools/ commands/ or any other action that needs to be
done before the actual pod is started. For example, loading a database schema or constructing a
config file from a definition passed in via configMap or secret.

For more information, see Using Init Containersto perform tasks before a pod is deployed.

10.9. Security / RBAC

Roles/ RolesBinding - A role represents a set of permissions within a particular namespace. For
example, agiven user can list pods/services within the namespace. The RoleBinding is used for
granting the permissions defined in aroleto a user or group of users.

ClusterRole/ ClusterRoleBinding - A ClusterRole represents a set of permissions at the Cluster
level. For example, agiven user has 'cluster-admin’ privileges admin on the cluster. The
ClusterRoleBinding is used for granting the permissions defined in a ClusterRole to a user or

38 Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS IS and subject to
change without notice. All trademarks used herein are property of their respective owners.

https://docs.openshift.com/container-platform/4.7/openshift_images/managing_images/tagging-images.html
https://docs.openshift.com/container-platform/4.7/nodes/pods/nodes-pods-using.html
https://docs.openshift.com/container-platform/4.7/nodes/containers/nodes-containers-init.html

group of users.

For more information, see Using RBAC to define and apply permissions.

10.10. Multus

Multus is ameta CNI that allows multiple CNIsthat it delegates to. This allows pods to get
additional interfaces beyond ethO via additional CNIs. The solution may have additional CNIs for
SR-10V and MacVLAN interfaces. Thiswould allow for direct routing of traffic to a pod without
using the pod network via additional interfaces. This capability isbeing delivered for usein only
corner case scenarios. It is not to be used in general for al applications.

Example use cases include, bandwidth requirements that necessitate SR-10V, and protocols that
are unable to be supported by the load balancer. The OV N-based pod network is used for every
interface that can be supported from atechnical standpoint.

For more information, see Understanding multiple networks.

10.10.1. Multus SR-IOV / MACVLAN

SR-10V is aspecification that allows a PCle device to appear to be multiple, separate physical
PCle devices. The Performance Addon component allows you to validate SR-IOV by running
DPDK, SCTP, and device checking tests.

SR-10V and MACVLAN interfaces are able to be requested for protocols that do not work with
the default CNI, or for exceptions where a network function has not been able to move
functionality onto the CNI. These are exceptional use cases. Multus interfaces are defined by the
platform operations team for the network functions which can then consume them. Using the
planning tools, multus interfaces have to be requested ahead of time by the company’s personnel.
VLANSs are applied by the SR-10V VF, thus the VLAN/network that the SR-IOV interface
requires must be part of the request for the namespace.

For more information, see About Single Root I/O Virtualization (SR-10V) hardware networks

By configuring the SR-IOV Network CRs named NetworkAttachmentDefinitions are exposed by
the SR-10V Operator in the CNF namespace. Different names are assigned to different Network
Attachment Definitions that are namespace-specific. MACVLAN versus Multus interfaces are
named differently to distinguish the type of device assigned to them. These are created by
configuring SR-IOV devices using the SriovNetworkNodePolicy CR.

Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS |S and subject to

change without notice. All trademarks used herein are property of their respective owners. 39

https://docs.openshift.com/container-platform/4.7/authentication/using-rbac.html
https://docs.openshift.com/container-platform/4.7/networking/multiple_networks/understanding-multiple-networks.html
https://docs.openshift.com/container-platform/4.7/networking/hardware_networks/about-sriov.html

From the CNF perspective, a defined set of network attachment definitions are available in the
assigned namespace to serve secondary networks for regular usage, or to serve for DPDK
payloads.

The SR-I0OV devices are configured by the cluster admin, and they are available in the
namespace assigned to the CNF.

The command "oc -n <cnfnamespace> get network-attachment-definitions’ will return the list of
secondary networks available in the namespace.

10.10.2. SR-IQV Interface Settings

The following settings must be negotiated with the cluster administrator for each network type
available in the namespace:

» Thetype of netdevice to be used for the VF (kernel or userspace)

» Thevlan ID to be applied to a given set of VFs available in a namespace

* For kernel-space devices, the ip allocation is provided directly by the cluster ip assignment
mechanism

» The option to configure the ip of agiven SR-IOV interface at runtime. For more information,
see Runtime configuration for an Ethernet-based SR-10V attachment.

Exampl e sriovnetworknodepolicy:

NOTE Thisis enabled by the cluster administrator.

0 Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS IS and subject to
change without notice. All trademarks used herein are property of their respective owners.

https://docs.openshift.com/container-platform/4.7/networking/hardware_networks/add-pod.html#runtime-config-ethernet_configuring-sr-iov

api Version: sriovnetwork.openshift.io/vl
ki nd: Sri ovNet wor kNodePol i cy
nmet adat a:
nanme: nnp-wlens3f0grp2
nanespace: openshift-sriov-network-operator
spec:
devi ceType: vfio-pci
i sSRdma: fal se
i nkType: eth
ntu: 9000
ni cSel ector:
devi cel D. 158b
pf Nanes:
- ens3f 0#50- 63
vendor: "8086"
nodeSel ect or:
kuber net es. i o/ host nane: wor ker -3
numvfs: 64
priority: 99
resour ceNane: wlens3f 0grp2

Example 1. Empty IPAM

The sriovnetwork CR creates the network-attach-definition within the target
networkNamespace.

NOTE

api Version: sriovnetwork.openshift.io/vl
ki nd: Sri ovNet wor k
nmet adat a:
name: sriovnet
nanespace: openshift-sriov-network-operator

spec:
capabilities: '{ "mac": true }'
i pam '{}'

net wor kNanespace: <CNF- NAVESPACE>
resour ceNanme: wlens3f 0grp2

spoof Chk: "off"

trust: "on"

vl an: 282

Example 2: Whereabouts IPAM

Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS |S and subject to
change without notice. All trademarks used herein are property of their respective owners.

41

api Version: sriovnetwork.openshift.io/vl
ki nd: Sri ovNetwork
nmet adat a:
nane: sriovnet
nanespace: openshift-sriov-network-operator
spec:
capabilities: '"{ "mac": true }'
i pam

"{"type":"whereabouts", "range": "FD97: OEF5: 45A5: 4000: 00D0: 0403: 0000: 00
01/ 64","range_start":"FD97: OEF5: 45A5: 4000: 00D0: 0403: 0000: 0001", "r ange
_end": " FD97: OEF5: 45A5: 4000: 00D0: 0403: 0000: 0020", "routes": [{"dst":"fd9
7: 0ef 5:45a5:: /48", "gw': "FDI7: EF5: 45A5: 4000: : 1"}]}'

net wor kNanmespace: <CNF- NAMESPACE>

resour ceNanme: wlens3f 0gr p2

spoof Chk: "off"

trust: "on"

vl an: 282

Example 3: Static IPAM

api Version: sriovnetwork.openshift.io/vl
ki nd: Sri ovNetwork
nmet adat a:
nane: sriovnet
nanespace: openshift-sriov-network-operator

spec:
capabilities: '"{ "mac": true }'
i pam '{"type":
"static","addresses":[{"address":"10.120. 26. 5/ 25", "gat eway": " 10. 120. 2
6.1"}]1}

net wor kNamespace: <CNF- NAVESPACE>
resour ceNane: wlens3f0grp2

spoof Chk: "of f"

trust: "on"

vl an: 282

Example 4: Using Pod Annotations to attach

22 Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS IS and subject to
change without notice. All trademarks used herein are property of their respective owners.

api Version: vl
ki nd: Pod
nmet adat a:
nanme: sanpl e- pod
annot ati ons:
k8s.vl.cni.cncf.io/networks: |-

[

{

"nanme": "net1l",

"mac": "20:04:0f:f1:88:01",

"ips": ["192.168.10.1/24", "2001::1/64"]
}

The examples depict scenarios used within the Core solution to deliver secondary network
interfaces, with and without IPAM, to a pod.
» Example 1 creates a network attachment definition that does not specify an IP address.
» Example 2 makes use of the static IPAM, and

» Example 3 makes use of the whereabouts CNI that provides a cluster wide DHCP option.

The actual addresses used for static IPAM and whereabouts are managed external to the cluster.

The Sriovnetwork CR will configure a network attachment definition within the CNF's
namespace.
[c]$ oc get net-attach-def -n <CNF- NAMESPACE>

NANE AGE
sriovnet 9d

Within the CNF namespace, the sriov resource is consumed via a pod annotation:

ki nd: Pod
nmet adat a:
annot ati ons:
k8s.v1l.cni.cncf.io/ networks: sriovnet

10.10.3. Attaching the VF to a pod

Once the right network attachment definition is found, applying the
k8s.vl.cni.cncf.i o/ net wor ks annotation with the name of the network attachment

Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS IS and subject to
change without notice. All trademarks used herein are property of their respective owners.

43

definition to the pod will add the additional network interfaces in the pod namespace.

Example:

api Version: vl
ki nd: Pod
nmet adat a:
nane: sanpl e-pod
annot ati ons:
k8s.vl.cni.cncf.io/networks: |-

[
{
"nanme": "netl",
"mac": "20:04:0f:f1:88:01",
"ips": ["192.168.10.1/24", "2001::1/64"]
}

10.10.4. Discovering SR-10V devices properties from the application

All the properties of the interfaces are added to the pod’'s

k8s. vl. cni.cncf.i o/ network-stat us annotation. The annotation is json-formatted
and for each network object contains information, such asips (where available), mac address,
and pci address.

Example:

a4 Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS IS and subject to
change without notice. All trademarks used herein are property of their respective owners.

k8s.vl.cni.cncf.io/ network-status: |-

[{
"nanme": "",
"interface": "ethO0",
"ips": |
"10. 132. 3. 148"
],
"mac": "Oa:58:0a:84:03:94",
"default": true,
"dns": {}
HA
"name": "cnfns/networknane",
"interface": "netl",
"ips": [
"1.1.1.2"
1,
"mac": "ba: 1d: e7: 31: 2a: e0",
"dns": {},
"device-info": {
"type": "pci",
"version": "1.0.0",
"pci": {
"pci -address": "0000:19: 00. 5"
}
}
}H

NOTE Theipinformation is not available if the driver specified is vf-io.

The same annotation is available as file content inside the pod, at the

/ et c/ podnet i nf o/ annot at i ons path. For convenience, alibrary isavailable to easily
consume this information from the application (bindingsin C and Go). For more information, see
DPDK library for use with container applications.

10.10.5. NUM A Awareness

If the pod is using a guaranteed QoS class, and the kubelet is configured with a suitable topology
manager policy (restricted, single-numanode), then the VF assigned to the pod will belong to the
same NUMA node as the other assigned resources (CPU and other NUMA aware devices).

For more information, see What huge pages do and how they are consumed by applications.

Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS |S and subject to

change without notice. All trademarks used herein are property of their respective owners. 45

https://docs.openshift.com/container-platform/4.7/networking/hardware_networks/about-sriov.html#nw-sriov-app-netutil_about-sriov
https://docs.openshift.com/container-platform/4.7/scalability_and_performance/what-huge-pages-do-and-how-they-are-consumed-by-apps.html

10.11. Upgrades

10.11.1. Handling platform upgrades

» CNF vendors should expect that the platform may be upgraded to new versions on an
ongoing basis employing CI/CD runtime deployment, without any advance notice to CNF
vendors.

* During platform upgrades, the Kubernetes API deprecation policy defined in the Kubernetes
Deprecation Policy must be followed.

» CNFs are expected to maintain service continuity during Platform Upgrades, and during CNF
version upgrades.

» CNFs need to be prepared for nodes to reboot, or shut down without notice.

» CNFs configure pod disruption budget appropriately to maintain service continuity during
platform upgrades.

» Applications may not deploy pod disruption budgets that prevent zero pod disruption.

» Applications must not be tied to a specific version of Kubernetes, or any of its components.

10.12. OpenShift Virtualization / kubevirt

10.12.1. Openshift Virtualization and VM s (CNV) best practices

The platform was designed as a pure container-based system, where all network functions are
containerized. However, it has become apparent that some NFs have not completed re-
architecting all components of their network functions to be fully containerized. To deal with this
lag, VMs are orchestrated via Kubernetes for an interim period of time for applications that
require low latency connectivity between containers and these VMs. When OpenShift
Virtualization becomes generally-available for enterprise workloads, such throughput- and
latency-insensitive workloads, may be added to the cluster. VNFs and other throughput- or
|atency-sensitive applications can be considered only after careful validation. Until then, itis
recommended to keep these workloads on OSP VMs.

OpenShift virtualization must be installed according to its About container-native virtualization
documentation, and only documented supported features may be used unless an explicit
exception has been granted. For more information, see About OpenShift Virtualization.

6 Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS IS and subject to
change without notice. All trademarks used herein are property of their respective owners.

https://kubernetes.io/docs/reference/using-api/deprecation-policy/
https://kubernetes.io/docs/reference/using-api/deprecation-policy/
https://docs.openshift.com/container-platform/4.3/cnv/cnv-about-cnv.html
https://docs.openshift.com/container-platform/4.3/cnv/cnv-about-cnv.html
https://docs.openshift.com/container-platform/4.7/virt/about-virt.html

To improve overall virtualization performance and reduce CPU latency, critical VNFs can take
advantage of OpenShift Virtualization’s high-performance features. These can provide the VNFs
with dedicated CPU resources and "isolate” QEMU threads, such as the emulator and the 1O
threads, on a separate physical CPU so that it does not affect the workloads CPU latency. For
more information, see:

« Enabling dedicated resources for virtual machines,
» Requesting dedicated cpu for QEMU emulator,
¢ 10 threads with QEMU emulator thread and dedicated pinned CPUs

Similar to OpenStack, OpenShift Virtualization supports the device role tagging mechanism for
the network interfaces (with the same format asit isin OSP). Users are able to tag Network
interfaces in the API and identify them in device metadata provided to the guest OS viathe
config drive. For more information, see Device Role Tagging.

10.12.2. VM image I mport Recommendations (CDI)

OpenShift Virtualization VMs store their persistent disks on kubernetes Persistent Volumes
(PVs). PVsarerequested by VMs using kubernetes Persistent Volume Claims (PVCs). VMs may
require a combination of blank and pre-populated disks to function. Blank disks can be
initialized automatically by KubeVirt when an empty PV isinitially encountered by a starting
VM. Other disks must be populated prior to starting the VM. OpenShift Virtualization provides a
component called the Containerized Data Importer (CDI) which automates the preparation of
pre-popul ated persistent disks for VMs. CDI integrates with KubeVirt to synchronize VM
creation and deletion with disk preparation by using a custom resource called a DatavVolume.
Using DataVolumes, data can be imported into a PV from various sources including container
registriesand HTTP servers.

The following recommendations must be followed when managing persistent disks for VMs:

* Blank disks: Create a PV C and associate it with the VM using a persistentVolumeClaim
volume type in the volumes section of the Virtual M achine spec.

 Populated disks: In the VirtualMachine spec, add a DataVolume to the dataVolumeTemplates
section and always use the datavVolume volume type in the volumes section.

Working with large VM disk images
In contrast to container images, VM disk images can be quite large (30GiB or more is common).
It isimportant to consider the costs of transferring large amounts of data when planning

Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS |S and subject to

change without notice. All trademarks used herein are property of their respective owners. 4

https://docs.openshift.com/container-platform/4.7/virt/virtual_machines/advanced_vm_management/virt-dedicated-resources-vm.html
https://kubevirt.io/user-guide/virtual_machines/dedicated_cpu_resources/#requesting-dedicated-cpu-for-qemu-emulator
https://kubevirt.io/user-guide/#/creation/disks-and-volumes?id=iothreads-with-qemu-emulator-thread-and-dedicated-pinned-cpus
https://kubevirt.io/user-guide/virtual_machines/startup_scripts/#device-role-tagging

workflows involving the creation of VMs (especially when scaling up the number of VMs). The
efficiency of an image import depends on the format of the file and also the transfer method
used. The most efficient workflow, for two reasons, isto host a gzip-compressed raw image on a
server and import viaHTTP. Compression avoids transferring zeros present in the free space of
the image, and CDI can stream the contents directly into the target PV without any intermediate
conversion steps. In contrast, images imported from a container registry must be transferred,
unarchived, and converted prior to being usable. These additional steps increase the amount of
data transferred between a node and the remote storage.

8 Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS IS and subject to
change without notice. All trademarks used herein are property of their respective owners.

Chapter 11. Operator Best Practices

To learn more details for OLM and SDK projects, including best practices, common
recommendations, suggestions and conventions, see Operator Best Practices.

Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS |S and subject to

change without notice. All trademarks used herein are property of their respective owners. 49

https://github.com/operator-framework/community-operators/blob/master/docs/best-practices.md

Chapter 12. Container Best Practices

12.1. Pod Exit Status

The most basic requirements for the lifecycle management of podsin OpenShift are the abilities
to start and stop correctly. When starting up, health probes like liveness and readiness checks can
be put into place to ensure the application is functioning properly.

There are two different ways a pod can stop on Kubernetes. The first way is that the pod can
remain alive but non-functional. In this case, if the administrator has implemented liveness and
readiness checks, OpenShift can stop the pod, and either restart it on the same node or a different
node in the cluster.

The second way is that the pod can crash and become non-functional. In this case, when the
application in the pod stops, it exits with a code, and writes suitable log entries to help the
administrator diagnose the issue that caused the problem.

Pods use terminationM essagePolicy: FallbackToL ogsOnError to summarize why they crashed,
and use stderr to report errors on the crash.

12.2. Graceful Termination

There are different reasons that a pod may need to shutdown on an OpenShift cluster. It might be
that the node the pod is running on needs to be shut down for maintenance, or the administrator
isdoing arolling update of an application to a new version which requires that the old versions
are shutdown properly.

When pods are shut down by the platform they are sent a SI GTERMsignal. This means that the
process in the container starts shutting down, closing connections, and stopping all activity. If the
pod does not shut down within the default 30 seconds, then the platform may send a SI GKI LL
signal which stops the pod immediately. This method is not as clean and the default time
between the SI GTERMand SI GKI LL messages can be modified based on the requirements of
the application.

Pods exit with zero exit codes when they are gracefully terminated.

50 Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS IS and subject to
change without notice. All trademarks used herein are property of their respective owners.

12.3. Pod Resource Profiles

OpenShift comes with a default scheduler that is responsible for being aware of the current
available resources on the platform, and placing containers/ applications on the platform
appropriately. For OpenShift to do this correctly, the application devel oper must create a resource
profile for the application. This resource profile contains requirements, such as how much
memory, CPU, and storage that the application needs. At that point, the scheduler is aware of the
nodes in the cluster that can satisfy the workload, and place the application on one of those nodes
(or distributeit). Or the scheduler places the pod that the application isin in a pending state until
resources come available.

All pods have aresource request that is the minimum amount of resources the pod is expected to
use at steady state for both memory and CPU.

12.4. Storage: emptyDir

There are several options for volumes and reading and writing files in OpenShift. When the
requirement is for temporary storage, and given the option to write filesinto directoriesin
containers versus an external filesystems, choose the enpt yDi r option. This provides the
administrator with the same temporary filesystem, so when the pod is stopped the dir is deleted
forever. In addition, theenpt yDi r can be backed by whatever medium is backing the node, or
it can be set to memory for faster reads and writes.

Using enpt yDi r with requested local storage, which limitsinstead of writing to the container
directories, will aso allow enabling r eadonl yRoot Fi | esyst emon the container or pod.

12.5. Liveness and Readiness Probes

As part of the pod lifecycle, the OpenShift platform needs to know the status of the pod at all
times. This can be accomplished with different health checks. There are at |east three states that
are important to the platform, these are, startup, running, shutdown. Applications can also be
running, but not healthy, meaning, the pod is up and the application shows no errors, but it
cannot serve any requests.

When an application starts up on OpenShift it may take awhile for the application to become
ready to accept connections from clients, or perform whatever duty it isintended for.

Two health checksthat are required to monitor the status of the applications are liveness and

Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS |S and subject to

change without notice. All trademarks used herein are property of their respective owners. 5l

readiness. As mentioned above, the application may be running but not actually able to serve
requests. This can be detected with liveness checks. The liveness checks send-specific requests to
the application that, if satisfied, indicate that the pod isin a healthy state, and operating within
the required parameters that the administrator has set. A failed liveness check resultsin the
container being restarted.

Thereis also astate of apod at startup. Here the pod may start and take awhile for different
reasons. Pods can be marked as ready if they pass the readiness check. The readiness check
determines that the pod has started properly and is able to answer requests. There are
circumstances where both checks are used to monitor the applicationsin the pods. A failed
readiness check results in the container being taken out of the available service endpoints. An
example of this being relevant is when the pod was under heavy load, failed the readiness check,
gets taken out of the endpoint pool, processes requests, passes the readiness check, and is added
back to the endpoint pool.

12.6. Use imagePullPolicy: 1fNotPresent

If there is a situation where the container dies and needs to be restarted, the image pull policy
becomes important. There are three image pull policies available: Al ways, Nnever and

i f Not Present . It isgenerally recommended to have apull policy of i f Not Present . This
means that if a pod needs to restart for any reason, the kubelet will check on the node where the
pod is starting, and reuse the already downloaded container image if it's available. OpenShift
intentionally does not set Al waysPul | | mages asturning on this admission plugin can
introduce new kinds of cluster failure modes. Self-hosted infrastructure components are still
pods. Enabling this feature can result in cases where aloss of contact to an image registry can
cause redeployment of an infrastructure or application pod to fail. We use

Pul I 1 f Not Pr esent sothat aloss of image registry access does not prevent the pod from
restarting.

It is noted that any container images, protected by registry authentication, have a condition
whereby a user who is unable to download an image directly can still launch it by leveraging the
host’s cached image.

12.7. Automount Services for Pods

Set automountServiceAccountToken: false on al pods, unless the containers need to access the
Kubernetes API.

52 Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS IS and subject to
change without notice. All trademarks used herein are property of their respective owners.

12.8. Disruption budgets

When managing the platform, there are at least two types of disruptions that can occur. They are
voluntary and involuntary.

When dealing with voluntary disruptions, a pod disruption budget can be set that determines how
many replicas of the application must remain running at any given time. For example, consider
the case where an administrator is shutting down a node for maintenance and the node has to be
drained.

If apod disruption budget is set, then OpenShift respects that and ensures that the required
number of pods are available by bringing up pods on different nodes, before draining the current
node.

Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS |S and subject to

change without notice. All trademarks used herein are property of their respective owners. 53

Chapter 13. Networking Overview

OpenShift is a multi-tenant environment. NFs are deployed within a single namespace.
Supporting applications, like an OAM platform for multiple NFs from the same vendor, must be
run in an additional separate namespace.

Multus may be supported within the platform for additional NICs within containers. However,
Multus should be used only for those cases that cannot be supported, for example, by a F5 load
bal ancer.

The POD and Services networks may have an unrouted address spaces and are only reachable via
service VIPs on the load balancers. The POD network may be NATed as traffic egresses the load
balancer. Inbound traffic is destination-NATed to Service/Pod | P addresses.

Applications use Network Policies for firewalling the application. Network Policies must be
written with a default deny, and only allow ports and protocols on an as needed basis for any
pods and services.

13.1. OV N-kubernetes CNI

OVN isRed Hat’'s CNI for pod networking. It is a Geneve-based overlay that requires L3
reachability between the host nodes. This L3 reachability can be over L2 or a pre-existing
overlay network. OpenShift's OVN forwarding is based on flow rules and implemented with
nftables on the host OS CNI POD.

54 Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS |S and subject to
change without notice. All trademarks used herein are property of their respective owners.

Chapter 14. User Plane Functions

14.1. Performance Addon Operator

Red Hat created the Performance Addon Operator for low latency nodes. The emergence of Edge
computing in the area of Telco / 5G plays akey rolein reducing latency and congestion
problems, and improving application performance. Many of the deployed applicationsin the
Telco space require low latency that can only tolerate zero packet |oss. OpenShift Container
Platform provides a Performance Addon Operator (PAO) to implement automatic tuning to
achieve low latency performance for applications. The PAO is a meta operator that leverages
MachineConfig, Topology Manager, CPU Manager, Tuned, and KubeletConfig to optimize the
nodes.

The PAO enables;

* Hugepages
¢ Dynamic CPU isolation
* NUMA Awareness

For more information, see Performance Addon Operator for low latency nodes.

14.2. Hugepages

In the Openshift Container Platform, nodes/hosts must pre-allocate huge pages.

All workers within a cluster may have 32,000, 2M hugepages per NUMA node enabled as

follows:
hugepages:
def aul t HugepagesSi ze: "2M
pages:
- size: "2M
count: 32000
node: O
- size: "2M
count: 32000
node: 1

To request huge pages, pods must supply the following within the pod.spec for each container:

Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS |S and subject to

change without notice. All trademarks used herein are property of their respective owners. 95

https://docs.openshift.com/container-platform/4.7/scalability_and_performance/cnf-performance-addon-operator-for-low-latency-nodes.html

resources:

limts:
hugepages-2M : 100M
menory:. "1G"
cpu: "1"

requests:
hugepages-2M : 100M
menory: "1G"
cpu: "1"

For more information, see Configuring huge pages.

14.3. CPU Isolation

The Performance Addon Operator manages host CPUs by dividing them into reserved CPUs for
cluster and operating system housekeeping duties, and isolated CPUs for workloads. CPUs that
are used for low latency workloads are set as isolated.

Deviceinterrupts are load balanced between all isolated and reserved CPUs to avoid CPUs being
overloaded, with the exception of CPUs where there is a guaranteed pod running. Guaranteed
pod CPUs are prevented from processing device interrupts when the relevant annotations are set
for the pod.

Worker nodes may have the following CPU profile applied, reserving 2 Cores per socket for
housekeeping (kernel) and the rest for workloads.

spec:

cpu:
i sol ated: 4-39,44-79
reserved: 0-3,40-43

* isolated - Has the lowest latency. Processes in this group have no interruptions and so can, for
example, reach much higher DPDK zero packet |oss bandwidth.

* reserved - The housekeeping CPUs. Threads in the reserved group tend to be very busy, so
latency-sensitive applications should be run in the isolated group

Default worker node per f or mancepr of i | e that may be enabled as follows:

56 Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS |S and subject to
change without notice. All trademarks used herein are property of their respective owners.

https://docs.openshift.com/container-platform/4.7/scalability_and_performance/cnf-performance-addon-operator-for-low-latency-nodes.html#cnf-configuring-huge-pages_cnf-master

api Versi on: performance. openshift.io/v2
ki nd: PerfornmanceProfile
nmet adat a:

nanme: perf-profile-2m worker
spec:

cpu:
i sol ated: 4-39,44-79
reserved: 0-3,40-43

hugepages:
def aul t HugepagesSi ze: "2M
pages:
- size: "2M
count: 32000
node: O
- size: "2M
count: 32000
node: 1
numa:

t opol ogyPol i cy: best-effort
real Ti meKer nel

enabl ed: fal se
nodeSel ect or:

node-r ol e. kuber net es. i o/ wor kerperf: ""

The resulting KubeletConfig: (partial config shown below)

{
"kind": "Kubel et Confi guration",
"cpuManager Pol i cy": "static",
"cpuManager Reconci | ePeri od": "b5s",

"t opol ogyManager Pol i cy": "best-effort",

s
"reservedSyst enCPUs": "0-3, 40-43",
}

Additionally, the per f or mancepr of i | e createsa“runTimeClass’ that pods must specify
within the pod. spec in order to fully achieve CPU isolation for the workload.

Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS |S and subject to

change without notice. All trademarks used herein are property of their respective owners. 57

oc describe performanceprofile perf-profile-2m worker

Nane: perf-profile-2m worker
Nanmespace:
Label s: <none>

Annot ati ons: <none>
APl Version: performance. openshift.io/v2
Ki nd: PerformanceProfile
Spec:
Cou:
| sol ated: 4-39, 44-79
Reserved: 0-3,40-43Contai ner Best Practices

Hugepages:
Def aul t Hugepages Size: 2M
Pages:
Count: 32000
Node: 0
Si ze: 2M
Count: 32000
Node: 1
Si ze: 2M

Node Sel ector:

node-rol e. kubernetes. i o/ wor ker perf:
Nunma:

Topol ogy Policy: Dbest-effort
Real Tinme Kernel:

Enabl ed: fal se

St at us:
Runtime C ass: per f or mance- perf-profil e-2m wor ker
Tuned: openshi ft-cl ust er - node-t uni ng-

oper at or/ openshi ft - node- perf or mance- perf-profil e-2m wor ker

For workloads requiring CPU isolation in (OCP 4.7.11) the pod. spec must have the following:

* For each container within the pod, resource requests and limits must be identical (Guaranteed
Quality of Service)

* Request and Limits are in the form of whole CPUs

» The runTimeClassName must be specified

» Annotations disabling CPU and IRQ load-balancing

An examplepod. spec isasfollows:

58 Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS IS and subject to
change without notice. All trademarks used herein are property of their respective owners.

nmet adat a:
annot ati ons:
cpu-1 oad- bal ancing.crio.io: "disable"
i rg-1 oad-bal ancing.crio.io: "disable"
nane: pao-exanpl e-podspec
spec:
cont ai ners:
- image: <PATH TO | MAGE>
name: test
resour ces:
limts:
cpu: 1
menory: 1G
hugepages-2M : 1000M s
requests:
cpu: 1
nenory: 1G
hugepages-2M : 1000M
restartPolicy: A ways
runti meCl assNane: perfornmance-perf-profile-2m worker

14.4. NUM A Awareness

Topology Manager collects hints from the CPU Manager, Device Manager, and other Hint
Providersto align pod resources, such as CPU, SR-IOV VFs, and other device resources, for al
Quality of Service (QoS) classes on the same non-uniform memory access (NUMA) node. This
topology information and the configured Topology Manager policy determine whether a
workload is accepted or rejected on a node.

To align CPU resources with other requested resources in a Pod spec, the CPU
Manager must be enabled with the static CPU Manager policy.

NOTE

The following Topology manager policies are available and dependent on the requirements of the
workload can be enabled. For high performance workloads making use of SR-IOV VFs, NUMA
awareness follows the NUMA node to which the SR-10V capable network adapter is connected.

Best-effort policy

For each container in a pod with the best-effort topology management policy, kubelet calls each
Hint Provider to discover their resource availability. Using thisinformation, the Topology
Manager stores the preferred NUMA Node affinity for that container. If the affinity is not
preferred, Topology Manager stores this and admits the pod to the node.

Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS |S and subject to

change without notice. All trademarks used herein are property of their respective owners. 59

Restricted policy

For each container in a pod with the restricted topology management policy, kubelet calls each
Hint Provider to discover their resource availability. Using thisinformation, the Topology
Manager stores the preferred NUMA Node affinity for that container. If the affinity is not
preferred, Topology Manager rejects this pod from the node, resulting in apod in a Terminated
state with a pod admission failure.

Single-numa-node policy

For each container in a pod with the single-numa-node topology management policy, kubel et
calls each Hint Provider to discover their resource availability. Using thisinformation, the
Topology Manager determines if asingle NUMA Node affinity is possible. If it is possible, the
pod is admitted to the node. If it is not not possible, the Topology Manager rejects the pod from
the node. Thisresultsin apod in a Terminated state with a pod admission failure.

For more information, see Using Topology Manager.

60 Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS |S and subject to
change without notice. All trademarks used herein are property of their respective owners.

https://docs.openshift.com/container-platform/4.7/scalability_and_performance/using-topology-manager.html

Chapter 15. Application Service Exposureto External
Networks

The following diagram depicts an overview of the exposure of application services to external
networks.

<4— Internal cluster traffic

c) <4-- External traffic

External network «-- Multus

' —— Container Network Interface,

i I : ‘.‘ pod network, service network
D Application Pods
Router
i Li i
] [
1 I ittt
]]
]]
]]
i
External IP External IP
service A service B

i i
))
]]

o 4 b -

1 1

! !

Application Application Application
service A

1
!
[P | Sy ——

service Bl ‘ | service B2 |
[

))))
1] 1 1
; I It i
A B A B A B A B A B A B
A
B B B :
]
]
Worker Worker Worker Worker Worker Worker
node 1 node 2 node 3 node 4 node 5 node N

The broken blue lines depict a pair of services that are exposed to the external networks. These
services consist of aVIP on the load balancer or aL7 Ingress. These VIPs are backed by services
at the Kubernetes layer that are then serviced by pods running in the platform. Each application
can get different I P addresses that are specifically associated with their application. Additionally,
if desired, multiple ports on the same VIP can listen for different functions and forward to
different services, and thereby different pods within the application.

The second mechanism of service delivery (depicted by the solid blue line), isto make a service

Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS |S and subject to

change without notice. All trademarks used herein are property of their respective owners. 61

available within the platform to either an application itself (internally to the application) or to
other applications within the platform.

The third mechanism (depicted by the broken orange line), isthe LEAST PREFERRED and
requires a design exception, to expose a pod via Multus and additional interfaces beyond ethO on
that pod. It is aso possible to have the load balancer act as a one-armed load balancer for this
Multus IP.

62 Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS |S and subject to
change without notice. All trademarks used herein are property of their respective owners.

Chapter 16. Service Mesh for Inter/Intra NF

16.1. Service M esh Introduction

Kubernetes clusters contain a network with flat layer 3 1P connectivity between all pods,
provided by a pluggable layer in Kubernetes called the Container Network Interface (CNI). In
the basic deployment scenario, that means that any application container can communicate with
any other application container. Any details of that communication (including plaintext or
encryption, protocols, authentication, monitoring) are the responsibility of each application
container.

Without intervention, each application isforced to implement all aspects of security requiring a
high degree of effort and diligence. Much of this effort is replicated since each application must
repeat it. As an example, even if al applications implement TL S properly, when a vulnerability is
discovered in a TLS implementation, every individual application must have a separate
vulnerability analysis executed, and patches made to software code and updated in the field.

A modern approach to securing traffic between Kubernetes pods (and accordingly,the
containerized applications that run in them, such as CNFs and MEC apps), is a service mesh. The
service mesh is a security-enhancing sidecar container that runs in each pod and proxies network
traffic to or from the main application container. In its position as a proxy, the service mesh
sidecar can provide security, resiliency, load balancing, and detailed measurement for the
application container. More importantly, the sidecar provides a consistent implementation of each
of these functions, regardless of the details of the application. For example, the sidecar has one
implementation of TLSthat isused for all sidecars across the entire Kubernetes cluster. If a
vulnerability isfound in thisimplementation, only one upgrade must be performed.

The sidecar is transparently injected into the Kubernetes pod without requiring any intervention
by the main application container. Application containers do not need to directly communicate in
any special way with the sidecar. Generally, application containers are unaware of the presence
of the sidecar. They communicate "as normal" and the sidecar transparently proxies these
communications, aslong as they are allowed by policy. This document details the requirements
so that the sidecar can correctly proxy application traffic and apply policy.

Service mesh is aso capable of doing CSR generation, signing and installing into the namespace
as part of the solution. This offloads all PK1 efforts from the CNF, and also makes the certificates
available for NFs within the application. The certificates are made available via Kubernetes
secrets as a volume mount if an application requires the keys for doing any TLS via Multus

Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS |S and subject to

change without notice. All trademarks used herein are property of their respective owners. 63

based interfaces.

Additionally, service mesh allows distributed tracing for HTTP based flows that can be analyzed
viathe Jaeger UI. This provides a consistent visibility mechanism across NFs for Service Based
Interface (SBI) communication.

The following diagram depicts a high level overview of a service mesh implementation.

Application logic
Namespace 1

Application container

plaintext
http, h2, tcp

1b, policy
tracing/
tap mTLS

Sidecar proxy

k¥ https, h2/s, tls

Pod Eth (CNI)

v

OVN

Application userdb
Namespace 2

Application container

8 plaintext
http, h2, tcp

tracing/
tap auth
policy mTLS

Sidecar proxy

https, h2/s, tls

Pod Eth (CNI)

The following diagram depicts a detailed overview of a service mesh implementation.

64 Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS IS and subject to
change without notice. All trademarks used herein are property of their respective owners.

Engress flow

Ingress flow

Application container —> Application container
nft R Sidecar proxy
Sidecar proxy L nft

Other NICs Pod Eth Pod Eth Other NICs

> (SR-10V) (CNI) ¢ (CNI) (SR-I0V)
10.10.1.41 10.10.7.20
OVN
| | | I
‘ [|
10.10.129.4 10.10.129.29 10.10.129.15 10.10.129.21
Pilot Prometheus Trace collector Citadel
kube-api @ @ Intermediate

Database 1

Database 2

CA cert & key

<+

It shows the full suite of components that are involved with service mesh delivery. Pilot isthe
Istio Control plane, the sidecar proxies are Envoy based proxies. Trace collector and Prometheus
provide statistics and traces. Not depicted is Jaeger which allows viewing of traces.

16.2. Service Mesh Tapping

As service mesh’s unique location related to the HT TP traffic for SBI interfaces, it iswell
positioned to provide a tapping solution. This solution feeds tools for doing traces on network
traffic for the purposes of call traces, and evaluating overall network health via statistical

analysis.

Service mesh is able to front end all SBI interfaces, and so provides the capacity for
comprehensive and consistent visibility across al of the SBI interfaces within the 5G Core.

Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS |S and subject to

change without notice. All trademarks used herein are property of their respective owners.

65

16.3. Service Mesh Requirementsfor CNF

1. The application must declare all listening ports as containerPorts in the pod specification it
provides to Kubernetes.

a The application must not listen on any other ports that are undeclared.
b. The service mesh may be configured to block connections to these ports.
c. These ports must be named in the pod specification with the protocol they implement.

i. The name field in the ContainerPort section must be of the form <protocol>[-
<suffix>] where <protocol> is one of the below, and the optional <suffix> can be
chosen by the application.

ii. Preferred prefixes. grpc, grpc-web , http , http2
iii. Fallback prefixes: tcp , udp
iv. Valid Example: http-webapi or grpc

2. The application must communicate with Kubernetes Services by their service IP instead of
individually selecting pods in that service.

a The service mesh selects the appropriate pod.
3. The application must not encrypt outbound traffic on the cluster network interface.

a The service mesh applies policy, authenticates servers and encrypts outbound traffic
before it leaves the application pod.

4. The application must not decrypt inbound traffic on the cluster network interface.

a The service mesh decrypts, authenticates clients and applies policy before redirecting
traffic to the application container.

5. The application should not manage certificates related to communication over the cluster
network interface.

a The service mesh manages, rotates and validates these certificates.

6. The application must not provide nftables or iptables rules.

7. The application must not use UID 1337 or tcp ports 15001 and 15020.

8. The application must not define Kubernetes Custom Resources in these namespaces:
a*.istio.io

b. *. aspennesh.io

66 Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS IS and subject to
change without notice. All trademarks used herein are property of their respective owners.

9. The application must not define Kubernetes resources in the istio-system namespace.

10. The application must propagate tracing headers when making outgoing requests based on
incoming requests.

a Example: If an application receives a request with atrace header identifying that request
with traceid 785a908c8d93b2d2 , and decides based on application logic that it must
make a new request to another application pod to fulfill that request, it must annotate the
new request with the same traceid 785a908c8d93b2d2.

b. The application must propagate all of these tracing headersif present: x-request-id, x-b3-
traceid, x-b3-spanld, x-b3-parentspanid, x-b3-sampled, x-b3-flags, b3.

c. The application must propagate the tracing headers by copying any header value from the
original request to the new request.

d. The application should not modify any of these header values unlessit understands the
format of the headers and wishes to enhance them (for example, implements
OpenTracing)

e. If some or none of the headers are present, the application should not create them.

f. If an application makes a new request and it is not in service of exactly one incoming
request, it MAY omit all tracing headers.

I. The application does not have to generate headers in this case. It could generate
headersif it implements, for example, OpenTracing. In this case, the service mesh
would use and propagate those IDs. Thisis optional.

ii. If there are no tracing headers, the service mesh generates a new trace.

Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS |S and subject to

change without notice. All trademarks used herein are property of their respective owners. 67

Chapter 17. Application Deployment

One option for application deployment is via Helm v3. Helm provides a mechanism to deploy
with site-specific templates that allow for repeatable deployment in multiple locations.

Make use of val ues. yam to make replicable deploymentsin different locations with
different parameters.

It is recommended that Images be built with Red Hat's Universal Base Image.

68 Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS IS and subject to
change without notice. All trademarks used herein are property of their respective owners.

Chapter 18. Standards

18.1. Container Labeling Standards

Labels are used to organize and select subsets of objects. For example, labels enable a service to
find and direct traffic to an appropriate pod. While pods can come and go, when labeled
appropriately, the service detects new pods, or alack of pods, and forwards or reduces the traffic
accordingly.

When designing your label scheme, it may make sense to map applications as types, location,
departments, roles, and other relevant details. The scheduler uses these attributes when
colocating pods or spreading the pods out amongst the cluster. It is aso possible to search for
resources by label.

18.2. Image Standards

It is recommended that container images be built utilizing Red Hat's Universal Base Image (UBI)
asthey will have a solid security baseline, as well as support from Red Hat.

Vendors must satisfy three requirements related to maintaining proper workload isolation in a
containerized environment. These requirements include:

1. Work with Red Hat’s Restricted SCC*

2. Work with Red Hat's Default SELinux Context*

3. Evidence the container image is secure:?

a Supported by dedicated, full time team providing releases of base image at least as
quickly as:

i. Scheduled release every six weeks to pick up less critical fixes

il. On-demand release for Critical or Important CVE within five days of CVE public
release

b. Guarantees alignment with host OS packages, versions, and so on, that run tightly
coupled to the container artifacts. Many CVEs and potential attacks result from mismatch
of untested versions of utility functions

c. Ensures globally consistent time zone usage and resulting timestamps for global
operators

Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS |S and subject to

change without notice. All trademarks used herein are property of their respective owners. 69

d. Enables Continuous Authorization to Operate (ATO). Authorize once, use many times
e Meetsrequirements of DOD, for example Air Force/DISA STIG

f. Supports system wide crypto consistency (for example, must have same crypto
implementation as our Red Hat host OS)

g. Provides authentication of base layer viadigital signature from originating vendor, and
strong signature authority

1 Thisis meant to forbid all changes to both primary config files (SCC, SEL) and the many
related files referenced by these primary files. All security configuration files must be unchanged
from the vendor’s released version.

2The Red Hat UBI is able to meet these requirements, and enables images built with it to meet
these requirements.

If avendor cannot satisfy these requirements, they will have to submit a Security Exception to
Network Operations for approval. Security Planning will not support approval of this exception
unless the vendor commits to a roadmap for satisfying all three of these requirements within 6
months.

Thisis not an exhaustive list of security requirements that vendors must satisfy.
NOTE For example, it does not cover general security requirements, such as access
control and logging.

18.2.1. Univer sal Base I mage infor mation

Universal Base Image (UBI) is designed to be afoundation for cloud-native and web applications
use cases developed in containers. You can build a containerized application using UBI, push it
to your choice of registry server, easily share it with others, and because it's freely
redistributable, even deploy it on non-Red Hat platforms. And sinceit’s built on Red Hat
Enterprise Linux, UBI isaplatform that is reliable, secure, and performant.

For more information, see Red Hat Universal Base Images.

Base Images
A set of base images, Micro, Minimal, Standard, and Multi-service are provided to provide
optimum starting points for a variety of use cases.

Runtime Languages

70 Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS IS and subject to
change without notice. All trademarks used herein are property of their respective owners.

https://developers.redhat.com/products/rhel/ubi/#assembly-field-sections-18455

A set of language runtime images (PHP, Perl, Python, Ruby, Node.js) enable devel opers to start
coding out of the gate with the confidence that a Red Hat built container image provides.

Complementary packages
A set of associated Y UM repositories/channels include RPM packages and updates that allow
users to add application dependencies and rebuild UBI container images anytime they want.

Red Hat UBI images are the preferred images to build CNFs on as they leverage the fully
supported Red Hat ecosystem. In addition, once a CNF is standardized on a Red Hat UBI, the
image can become Red Hat certified.

Red Hat UBI images are free to vendors so there is alow barrier of entry to getting started.

Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS |S and subject to

change without notice. All trademarks used herein are property of their respective owners. e

Chapter 19. Security

19.1. Elevated privilege container capabilities

Container images will not be granted the use of any non-default Linux capabilities. Such images
will be blocked from running entirely or fail at runtime due to lack of privileges.

19.2. CPI-810

All CNFs should be compliant with CPI-810. If necessary, work with CPI-810 to determine
CNFs compliance.

19.3. Image Security

Images should be scanned by CVE scanners while stored in the Internal Registry. Vulnerabilities
found during scanning result in flags, and deployment of images with vulnerabilities require
exceptions.

Images for use on the core solution must include digital signatures which validate that the image
is from an authorized vendor. In addition, part or all of an authorized CNF delivered by the
vendor, has a current component version, and has not been modified since signing. At a
minimum, the signature must include information identifying the container base image included,
aswell asfor the entire container contents. Accompanying software artifacts, such as Helm
charts, and shell scripts must be similarly signed individualy.

19.4. CNF Network Security

CNF Tenant security isthe responsibility of the CNF team. Vendors must work through the
onboarding process to create a security plan. CNFs must have the least permissions possible, and
must implement Network Policies that drop all traffic by default. CNFs must also permit only the
relevant ports and protocols to the narrowest ranges of addresses possible.

19.5. Secrets M anagement

Secrets objects in OpenShift provide away to hold sensitive information, such as passwords,
config files and credentials.

72 Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS IS and subject to
change without notice. All trademarks used herein are property of their respective owners.

There are four types of secrets:

1. Service account
2. Basic auth

3. Sshauth

4. TLS

Secrets can be added via deployment configurations or consumed by pods directly.

For more information, see Understanding secrets.

Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS IS and subject to 73
change without notice. All trademarks used herein are property of their respective owners.

https://docs.openshift.com/container-platform/4.7/nodes/pods/nodes-pods-secrets.html

Chapter 20. Contributors

Name Title Email Area of Contribution

74 Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS IS and subject to
change without notice. All trademarks used herein are property of their respective owners.

Chapter 21. Document History

Version

Date

Change

Version POC

Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS IS and subject to

change without notice. All trademarks used herein are property of their respective owners.

75

Chapter 22. Document Approvals

Name Title Company Date of Approval

76 Copyright Red Hat, Inc. 2022. Copyright Verizon 2022 All Rights Reserved. Information contained herein is provided AS IS and subject to
change without notice. All trademarks used herein are property of their respective owners.

	Cloud-native Network Function (CNF) Requirements
	Table of Contents
	Chapter 1. Cloud-native Network Function Requirements
	1.1. Introduction
	1.2. Scope
	1.3. Refactoring
	1.4. Pods

	Chapter 2. CNF Developer Guidelines
	2.1. Preface
	2.2. Goals & Non-goals
	2.3. Principle of Least Privilege
	2.4. Avoid Accessing Resources on Host
	2.5. Avoid Mounting host directories as volumes
	2.6. Avoid the host’s network namespace
	2.7. Capabilities
	2.7.1. IPC_LOCK
	2.7.2. NET_ADMIN
	2.7.3. (Avoid) SYS_ADMIN
	2.7.4. SYS_NICE
	2.7.5. SYS_PTRACE

	2.8. Operations that can be executed by OpenShift
	2.9. Operations that cannot be executed by OpenShift
	2.10. Analyzing Your Application
	2.11. Capabilities Example

	Chapter 3. CNF Best Practice
	3.1. Control Plane and Management CNFs

	Chapter 4. Cloud-native CNFs - SCC Implementation
	4.1. CNFs that do not require advanced networking features (Category 1)
	4.2. CNFs that require advanced networking features (Category 2)
	4.3. User-Plane CNFs (Category 3)

	Chapter 5. CNF Expectations and Permissions
	5.1. Cloud Native Design Best Practices
	5.2. High Level CNF Expectations
	5.3. Platform Restrictions

	Chapter 6. OpenShift Platform
	Chapter 7. Software Core/Edge
	7.1. Helm v3
	7.2. Kubernetes
	7.3. CNI – OVN
	7.4. Container storage (CSI)
	7.5. Block storage
	7.6. Object storage
	7.7. Container Runtime
	7.8. CPU Manager / Pinning
	7.9. Host OS

	Chapter 8. PaaS Core/Edge
	8.1. Certificate Management
	8.2. Distributed Tracing
	8.3. Pod Security
	8.4. Load Balancer/Service Proxy
	8.5. CI/CD Framework
	8.6. Kubernetes API Versions

	Chapter 9. Pod Permissions
	Chapter 10. OpenShift Best Practices
	10.1. Logging
	10.2. Monitoring
	10.3. CPU Allocation
	10.3.1. NUMA Configuration

	10.4. Memory Allocation
	10.5. Affinity / Anti-affinity
	10.6. Taints and Tolerations
	10.7. Requests / Limits
	10.8. Pods
	10.8.1. No naked pods
	10.8.2. Image tagging
	10.8.3. One process per container
	10.8.4. init containers

	10.9. Security / RBAC
	10.10. Multus
	10.10.1. Multus SR-IOV / MACVLAN
	10.10.2. SR-IOV Interface Settings
	10.10.3. Attaching the VF to a pod
	10.10.4. Discovering SR-IOV devices properties from the application
	10.10.5. NUMA Awareness

	10.11. Upgrades
	10.11.1. Handling platform upgrades

	10.12. OpenShift Virtualization / kubevirt
	10.12.1. Openshift Virtualization and VMs (CNV) best practices
	10.12.2. VM image Import Recommendations (CDI)

	Chapter 11. Operator Best Practices
	Chapter 12. Container Best Practices
	12.1. Pod Exit Status
	12.2. Graceful Termination
	12.3. Pod Resource Profiles
	12.4. Storage: emptyDir
	12.5. Liveness and Readiness Probes
	12.6. Use imagePullPolicy: IfNotPresent
	12.7. Automount Services for Pods
	12.8. Disruption budgets

	Chapter 13. Networking Overview
	13.1. OVN-kubernetes CNI

	Chapter 14. User Plane Functions
	14.1. Performance Addon Operator
	14.2. Hugepages
	14.3. CPU Isolation
	14.4. NUMA Awareness

	Chapter 15. Application Service Exposure to External Networks
	Chapter 16. Service Mesh for Inter/Intra NF
	16.1. Service Mesh Introduction
	16.2. Service Mesh Tapping
	16.3. Service Mesh Requirements for CNF

	Chapter 17. Application Deployment
	Chapter 18. Standards
	18.1. Container Labeling Standards
	18.2. Image Standards
	18.2.1. Universal Base Image information

	Chapter 19. Security
	19.1. Elevated privilege container capabilities
	19.2. CPI-810
	19.3. Image Security
	19.4. CNF Network Security
	19.5. Secrets Management

	Chapter 20. Contributors
	Chapter 21. Document History
	Chapter 22. Document Approvals

