

Oracle Database Workloads On OpenShift
Virtualization Reference Architecture

Background​ 2
OpenShift Virtualization architecture overview​ 4
Oracle Database design principles​ 6
Reference architecture​ 7

Compute​ 8
Network​ 8
Storage​ 9

Hardware configuration​ 9
OpenShift Virtualization configuration​ 10
Oracle Database configuration​ 14

Oracle Database Single Instance​ 15
Oracle RAC database​ 17

Observability and monitoring​ 19
System performance evaluation​ 22

Test coverage summary​ 23
Evaluation of impact of VM Live Migration​ 25
Final thoughts​ 26

This article details Red Hat's engineering efforts to support running a Oracle

Database 19c on Red Hat OpenShift Virtualization. It provides a

comprehensive reference architecture, validation results covering functionality,

performance, scalability, and live migration, along with links to testing artifacts

hosted on GitHub.

OpenShift Virtualization offers robust performance for demanding production

workloads, such as Oracle databases, providing a viable virtualization

alternative without sacrificing performance. This is especially for technology

leaders, architects, engineering teams, and project managers involved in

evaluating and adopting single-instance Oracle Database or Oracle RAC

Database on OpenShift Virtualization.

The architecture design principles focus on resource allocation, partitioning,

and abstraction layer optimization for compute, network, and storage.

Performance tests using HammerDB with the TPC-C benchmark prove that

Oracle Database can successfully run on OpenShift Virtualization with

different storage solutions including software defined Red Hat OpenShift Data

Foundation or traditional SAN storage dynamically provisioned via

Pure/Portworx CSI driver. This article will also highlight observability and

monitoring, using Prometheus and Grafana for infrastructure and

Oracle-specific insights.

Background

Many customers are seeking virtualization alternatives without sacrificing

performance. OpenShift Virtualization provides robust performance for

demanding production workloads, including enterprise databases.

https://developers.redhat.com/products/openshift/virtualization
https://www.hammerdb.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift-container-storage
https://www.redhat.com/en/technologies/cloud-computing/openshift-container-storage
https://docs.portworx.com/portworx-enterprise/operations/operate-kubernetes/storage-operations/csi

One of the most common components in traditional software architecture is

the Oracle Database. To support customers interested in evaluating and

adopting Oracle Database on OpenShift Virtualization, Red Hat has dedicated

engineering resources to provide an optimized experience operating Oracle

Database on OpenShift Virtualization.

This article assumes readers have an understanding of Red Hat OpenShift

Container Platform. We do not intend to discuss the generic architecture of

the Oracle Database, nor performance tuning. Instead, we will explain the

architecture options for setting up and configuring OpenShift Virtualization to

enable Oracle Database to achieve the best performance.

This post is intended for the following professionals involved in evaluating,

validating, and deciding on the adoption of Oracle Database on OpenShift

Virtualization:

●​ Technology leaders (e.g., VPs, CTOs): Stakeholders who are

responsible to optimize ROI (Return on investment) and TCO (Total

cost of ownership) of the day-to-day operations of running Oracle

Database workloads in hybrid or on-premises cloud scenarios.

●​ Architects: Customer architects can review the reference

architecture and test results to assess whether OpenShift

Virtualization is a viable platform for hosting Oracle Database

workloads in their organization. This article provides architectural

requirements and enables architects to run independent validations.

●​ Engineering teams: Engineering teams can leverage the

performance tests used by Red Hat during this evaluation, along with

reusable artifacts available on GitHub, to accelerate their test setup

and automation, streamlining the validation process.

https://www.redhat.com/en/resources/openshift-container-platform-datasheet
https://www.redhat.com/en/resources/openshift-container-platform-datasheet

●​ Project managers: Project managers can use the reference

architectures to identify affected components and responsible teams.

They can also use the standardized testing.

OpenShift Virtualization architecture overview

OpenShift Virtualization is the Red Hat implementation of the open source

KubeVirt project. It is built on top of the standard OpenShift platform. A virtual

machine (VM) runs within a containerized pod, OpenShift Container Platform

manages VMs the same as it manages any pod, where a VM instance has

access to the same platform services, including security, network, and storage

like a regular container application. The only difference is the VM is managed

directly at pod level unlike regular workload applications running inside

containers.

Architecture components:

●​ Kernel-based virtual machine (KVM): The VM hypervisor on

OpenShift is part of the Linux kernel.

●​ Virtual machine instance (VMI): Each VM represented by a VMI is

created by QEMU using KVM to emulate hardware, QEMU creates

user space level isolation.

●​ KubeVirt: Kubernetes add-on to manage VMs as Kubernetes

resources, so that VMs will look like a pod.

●​ virt-operator: Manages KubeVirt components installation

and updates.

●​ virt-controller: Handles VM lifecycle management (e.g.,

restart on failure, scaling).

●​ virt-handler: A daemon on a KubeVirt enabled node to

manage VMs on hosts using KVM/QEMU.

●​ virt-launcher: One per VM Pod, acts as the orchestrator

that manages the QEMU/KVM virtual machine process inside

the pod.

●​ Custom Resources (CRs): Represents a VM definition,

running a VM instance, and scheduling/policies.

●​ Pod wrapper: Serves as a wrapper for the QEMU process. VMI runs

inside the Pod as a virtualized guest OS.

●​ Storage: OpenShift Virtualization supports a variety of storage

solutions, including a variety of Kubernetes native options such as

OpenShift Data Foundation, Portworx, and more traditional

enterprise solutions such as iSCSI, Fibre Channel (FC) SAN storage,

and others. The Kubernetes native storage solution, OpenShift Data

Foundation, built on the open source Ceph project, delivers scalable,

redundant storage with an abstraction layer optimized for Kubernetes

environments. OpenShift Data Foundation also supports dynamic

provisioning of persistent volumes (PVs) and persistent volume

claims (PVCs), simplifying storage management.

For this Oracle Database validation project, we will consider multiple storage

alternatives. However, OpenShift Data Foundation will be the primary focus

within the scope of this document due to its seamless integration with

Kubernetes. When deploying Oracle Database workloads, it is important to

evaluate and select the storage solution that best meets your performance

requirements and operational needs.

Network: VMs access network via Multus (CNI meta-plugin) or Single Root

I/O Virtualization (SR-IOV), where Multus is defined at the pod level.

Figure 1: OpenShift Virtualization conceptual diagram.

Oracle Database design principles

When an Oracle Database runs on a virtualized operating system, the VM is

responsible for ensuring the database receives adequate system resources to

operate efficiently and remain resilient. Since real-world infrastructure

resources are limited, the infrastructure architecture must be carefully

designed to balance resource allocation and accommodate the varying

demands of different workloads.

A common architectural approach to boost Oracle Database performance at

the infrastructure level includes the following principles:

●​ Resource allocation: Allocate sufficient resources in terms of

compute, storage and network to eliminate bottlenecks.

●​ Resource partitioning: When resources are limited, partition

resource requirements and implement tailored solutions to meet

specific needs.

●​ Abstraction layer optimization: Avoid unnecessary or low-value

abstraction layers in exchange flexibility for performance gains.

Oracle Database relies heavily on three primary types of system resources:

●​ Compute: This includes vCPUs, IOThreads, memory, and the ability

to scale across nodes.

●​ Network: Oracle Database is highly sensitive to I/O performance.

Client access and storage access have distinct throughput and

latency requirements. As a result, Oracle Database architectures

often use separate networks for different types of traffic.

●​ Storage: Redo logs, data files, and backups have different read/write

performance needs. Whenever possible, you should place these on

separate physical storage to ensure optimal I/O performance.

OpenShift Virtualization offers the capabilities and flexibility needed to support

various approaches for resource allocation based on system resource

partitioning needs.

Reference architecture

This section discusses architecture considerations and solution options in

Oracle Database on OpenShift Virtualization design.

Compute

Ensure Oracle Database has sufficient computation resources, that OpenShift

Virtualization platform provides direct control over:

●​ Configuring the vCPU and RAM allocation for resource vertical

scaling.

●​ OpenShift Virtualization cluster extensibility for horizontal scalability.

●​ Control of VM IO Thread count allocation to eliminate pod level I/O

bottleneck.

●​ Avoid overcommitting resources for virtual machines hosting Oracle

Database workloads allocating more virtualized CPUs or memory

than there are physical resources on the system.

Network

Oracle Database traffic has different performance requirements in terms of

network latency, throughput, and reliability. OpenShift Container Platform pod

Multus is a capability to partition network traffic and mediate multiple network

protocols. Consider the following:

●​ Implementing different network paths for OpenShift

OVN-Kubernetes, storage, and virtual machines.

●​ For Oracle RAC Database installations, further segregate network

traffic for RAC instance-to-instance interconnect communication, and

“public” network communication.

●​ For mission critical workloads sensitive to latency and throughput,

consider leveraging SR-IOV for virtual network interfaces creating a

direct path from VM to underlying physical resources.

Storage

As previously mentioned, OpenShift Virtualization supports a wide range of

storage solutions, from Kubernetes-native options like OpenShift Data

Foundation and Portworx to traditional enterprise systems such as iSCSI and

Fibre Channel (FC) SAN. This flexibility allows users to choose storage that

best fits their performance and operational needs.

While there is no universal rule in selecting appropriate storage option, the

following principles could be used as guidelines:

●​ Balance between the need for operational flexibility (ease of

provisioning, integration with platform) and performance (IO latency,

throughput) requirements.

●​ Support for multi-write option (shared volume between two or more

VMs) that may be required for Oracle RAC Database.

Hardware configuration

The design of the initial performance tests has been scoped to a set of

hardware resources available today.

Clusters specification:

-​ Cluster 1 (primary)
●​ 4 x Dell R660 servers

●​ 128 CPU threads (2 sockets of Intel Xeon Gold 6430)

●​ 256 GB memory

●​ 2x 480 GB root disk

●​ 4x 1.6 TB NVME drives

●​ 4 x 25Gbps Broadcom NIC

●​ 2 x 25Gbps Intel 810 NIC

●​ 2 x 32Gbps QLogic 2772 Fiber Channel HBA

-​ Cluster 2

●​ 4x PowerEdge R6715 servers

●​ 256 CPU threads (1 socket of AMD EPYC 9745)

●​ 1.5 TB memory

●​ 480GB root disk

●​ 4x 1.6 TB NVME drives

●​ 2x 100Gbps Broadcom NIC

The complete, in-depth testing and analysis of configuration options was
performed using Cluster 1 (4 x PowerEdge R660). However, we also
conducted ad-hoc baseline testing with AMD EPYC CPU hardware backed by
the Red Hat OpenShift Data Foundation storage to check for compatibility and
performance differences. These baseline results, utilizing Red Hat OpenShift
Data Foundation storage, showed performance was the same or higher than
the R660 cluster, a result attributed to the AMD cluster's higher-tier hardware.

OpenShift Virtualization configuration

While the default configuration for OpenShift Virtualization and OpenShift

Data Foundation storage provides reasonable performance, further

configuration changes have been made to optimize the test platform for

IO-intensive workload typical for databases:

●​ Configured OpenShift Data Foundation to use a performance profile.

https://docs.redhat.com/en/documentation/red_hat_openshift_data_foundation/4.18/html/planning_your_deployment/infrastructure-requirements_rhodf#resource-requirements-for-performance-profiles_rhodf

●​ Configured OpenShift Data Foundation and OpenShift Virtualization

to separate out OpenShift Data Foundation storage traffic from

general Software Defined Network (OpenShift Container Platform

SDN/OVN-Kubernetes) traffic. (Chapter 8. Network requirements |

Planning your deployment | Red Hat OpenShift Data Foundation |

4.18)

●​ Segregated traffic for virtual machines (Oracle Database and

HammerDB test harness) from OpenShift Data Foundation storage

and OpenShift Container Platform OVN-Kubernetes using separate

physical network interfaces. To reduce latency and increase

throughput, network interfaces introduced to affected virtual

machines are using Single Root I/O Virtualization (SR-IOV) (Figure

2).

Cluster specification:

●​ OpenShift version: 4.18.9

●​ OpenShift Virtualization: Enabled via OperatorHub

●​ Nodes:

●​ 3 x Hybrid (Control Plane/ Worker/ Storage) nodes

●​ 1 x Worker node

●​ Networking (specific to Oracle Database VMs):

●​ LACP bond with 4 Broadcom 25Gbps NICs partitioned to

segregate OpenShift OVN-Kubernetes, OpenShift Data

Foundation storage client, OpenShift Data Foundation storage

replication traffic.

●​ Two Intel x810 25GB NICs for virtual machine traffic with two

different subnets (Public and Private) configured to be

presented to virtual machines using SR-IOV.

https://docs.redhat.com/en/documentation/red_hat_openshift_data_foundation/4.18/html/planning_your_deployment/network-requirements_rhodf#segregating-storage-traffic_rhodf
https://docs.redhat.com/en/documentation/red_hat_openshift_data_foundation/4.18/html/planning_your_deployment/network-requirements_rhodf#segregating-storage-traffic_rhodf
https://docs.redhat.com/en/documentation/red_hat_openshift_data_foundation/4.18/html/planning_your_deployment/network-requirements_rhodf#segregating-storage-traffic_rhodf

●​ Storage (specific to Oracle Database VMs):

OpenShift Container Platform has been configured with two types of

storage - Kubernetes native OpenShift Data Foundation, Pure Storage

Flash Array

●​ OpenShift Data Foundation storage (backed by 4x 1.5 TB NVMe

drives) configured with a performance profile and using a

separate storage network.

●​ Pure Storage FlashArray FA-C50R4 provisioned using Portworx

Enterprise operator (version 25.3.1)

Figure 2: OpenShift Virtualization node network configuration.

Oracle Database configuration

Virtual machines to host the Oracle Database are moderately sized to avoid

overcommitment of resources and to compare results of testing on different

hardware options. The Oracle Database has not been specifically tuned for

the Transaction Processing Performance Council Benchmark C (TPC-C) test

and largely uses a default configuration with exception of the few common

tuning changes based on best practices.

We selected tuning parameters based on the size of the virtual machine,

specifics of the benchmark test workload, and monitoring information. We

assessed the effectiveness of each change by comparing test results with

baseline numbers. Oracle Database configuration could be further optimized

following recommendations from Database Performance Tuning Guide.

Tests have been performed using two different types of shared storage -

OpenShift Data Foundation and Fiber Channel Pure Storage FlashArray.

Figure 3 shows that the Oracle Database and HammerDB client access were

on the same network. Data volumes for virtual machines are configured to

preallocate disk space to improve write operations.

https://docs.oracle.com/en/database/oracle/oracle-database/19/tgdba/index.html
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html/virtualization/storage#virt-using-preallocation-for-datavolumes

Oracle Database Single Instance

Figure 3: Single Instance Oracle Database VM performance test architecture with
OpenShift Data Foundation storage.

 We have performed separate ad-hoc tests to assess the impact of storage on

the performance of the database by adding NVMe storage using a local

storage operator.

Virtual machine specification:

●​ OS: RHEL 8.10

●​ VM Count: 1

●​ vCPU: 16

●​ Memory: 48GB

●​ Storage: 250GB (Root and DB Data residing on the same volume) as

block device from RH ODF

●​ DataVolume: Created using “preallocation: true” (thick provisioning).

●​ Networking: Connected to public subnet using SR-IOV.

Oracle Database setup:

 Oracle Database version: 19c Enterprise Edition with Release Update 26

(version 19.26)

●​ The database is set up with a filesystem as the target for data files

(root volume with OpenShift Data Foundation backed storage) using

OMF (Oracle Managed Files).

●​ To ensure compatibility of the test with future versions of Oracle

Database, the database has been created using the Container

Database (CDB) architecture.

●​ Memory allocation used totalMemory of 32GB as input for the DB

creation wizard (allowing Oracle Database installation to

automatically assess SGA/PGA split).

●​ Additional tuning parameters:

●​ 4 Data files manually extended to 32GB

●​ REDO log size adjusted to 4GB

●​ 4 REDO log disk groups

●​ FILESYSTEMIO_OPTIONS: SETALL (allowing asynchronous

IO and direct IO)

●​ USE_LARGE_PAGES: AUTO (to optimize CPU usage for

large SGA size)

Note: For the performance tests with NVME backed storage, a separate

filesystem has been mounted using NVME device and assigned as target

destination for datafiles.

Oracle RAC database
Two Oracle RAC instances are hosted on two separate worker nodes with
identical configuration. Due to the hardware constraints, neither Oracle
specific system resources nor resource access is partitioned, all traffic for
storage I/O, HammerDB client interactions, and RAC interconnect
communications share the same communication bridge. The storage class for
the persistence volume uses the default setting.

Figure 4: Oracle RAC Database VM performance test architecture with OpenShift Data
Foundation storage

Virtual Machine Configuration

●​ OS: RHEL 8.10
●​ VM Count: 2
●​ vCPU: 24
●​ Memory: 64GB
●​ Storage:

○​ OS Root disk (also Oracle binaries): 100 GB
○​ 3 x Shared Volumes (1 CSR, 1 Data, 1 Fast Recovery):250GB

●​ Networking: 2 virtual NICs (Public Subnet and Private Subnet)
connected via SR-IOV

Oracle Database setup:

●​ Software versions:
○​ Oracle Grid Infrastructure 19c with Release Update 26 (version

19.26)
○​ Oracle Database 19c Enterprise Edition with Release Update 26

(version 19.26)
●​ Memory allocation used totalMemory of 42GB as input for the DB

creation wizard (allowing Oracle Database installation to automatically

assess SGA/PGA split).

●​ Storage provided using Oracle Automatic Storage Management (ASM)

Disks with ASM Filter Driver kernel modules.

●​ Three disk groups were provisioned using ASM :

○​ OCR - for Oracle Cluster Registry and Oracle Clusterware files

○​ DATA - datafiles for RAC database

○​ REC - for Fast Recovery Area

All disk groups using External redundancy type (Oracle ASM does not

provide redundancy on Oracle level)

●​ Additional tuning parameters:

○​ 4 Data files manually extended to 32GB

○​ REDO log size adjusted to 4GB

○​ 8 REDO log disk groups (4 for each thread/instance)

○​ USE_LARGE_PAGES: AUTO (to optimize CPU usage for large

SGA size)

Observability and monitoring

OpenShift offers a powerful, integrated observability platform that consolidates

monitoring across both infrastructure and application layers. It natively

supports metrics collection, logging, and alerting, and can be extended to

include observability data from external applications like Oracle Databases.

This unified approach reduces operational complexity while enabling

end-to-end visibility.

Observability for OpenShift Virtualization is seamlessly integrated into the

same platform, allowing you to monitor virtual machines, system resources,

and workloads (i.e., Oracle Databases within a single, consistent monitoring

stack).

The Oracle Database Observability Exporter, deployed within OpenShift,

collects Oracle Database performance metrics and metadata, which are

exposed to Prometheus. Grafana visualizes these metrics, providing real-time

dashboards to detect abnormal patterns, resource pressure, and performance

issues across Oracle Database and VM layers.

To enhance database-level analysis, you can leverage HammerDB during

performance testing to capture snapshots and generate AWR (Automatic

Workload Repository) reports. When combined with metrics from Prometheus

and Grafana, these reports provide a richer, multidimensional understanding

of workload behavior and potential bottlenecks.

Additionally, Oracle Database Enterprise Manager serves as a complementary

tool, offering detailed diagnostics and specialized monitoring capabilities

tailored to Oracle Databases. Used alongside OpenShift’s unified observability

platform, it ensures comprehensive coverage for infrastructure and Oracle

Database specific operational insights.

Figure 5: Monitoring architecture.

https://www.hammerdb.com/

Figure 6 shows a sample Grafana dashboard deployed as part of the

observability and monitoring setup for the OpenShift Virtualization platform.

Figure 6: OpenShift Virtualization monitoring dashboard sample.

Figure 7 shows a sample Oracle Database Grafana dashboard deployed on

the OpenShift Virtualization platform.

Figure 7: Oracle Database monitoring dashboard sample.

System performance evaluation

The performance test was designed to measure database transaction

throughput and query latency for OLTP (Online Transaction Processing)

workloads. We used HammerDB, open source database performance testing

software to simulate OLTP workloads using the TPC-C benchmark against the

single-instance Oracle Database with the previously mentioned system

details. The TPC-C test simulates a real-world order management system,

with a mix of 80% write operations and 20% read operations, including

high-frequency customer orders, payments, inventory checks, and batch

deliveries. The test execution involves HammerDB generating TPC-C

workloads on Oracle Database within OpenShift Virtualization.

https://www.hammerdb.com/
https://www.hammerdb.com/
https://www.hammerdb.com/

Figure 8: HammerDM test harness configuration.

Test coverage summary

With HammerDB test harness, the scale-run profile was configured to

simulate meaningful workloads with virtual user counts 20, 40, 60, 80 and

100, using 500 warehouses with each test run for 20 minutes with a ramp-up

period of 3 minutes. We designed this setup to reflect realistic production

scenarios and to evaluate the system’s performance under scaled

transactional loads.

Full set of tests was executed against following Oracle Database

configurations:

●​ Oracle Database Single instance

○​ Virtual machine configured with virtual disk backed OpenShift

Data Foundation

○​ Virtual machine configured with virtual disk backed by volumes

from Pure Storage FlashArray using Fiber Channel

○​ Ad-hoc test with NVME disk provisioned via Local Storage

operator

●​ Oracle RAC Database

○​ Virtual machines configured with virtual disk backed OpenShift

Data Foundation

○​ Virtual machines configured with virtual disk backed by volumes

from Pure Storage FlashArray using Fiber Channel

Based on the reference architecture configuration, the test results showed

strong New Orders Per Minute (NOPM) and Transactions Per Minute (TPM)

metrics for the single-instance Oracle Database with OpenShift Data

Foundation and Fiber Channel PureStorage storage solutions. Our tests show

that configuration with Fiber Channel storage had higher throughput

measured in transactions per minute compared to OpenShift Data Foundation

with improvement of approximately 26 percent. TPM for setup with directly

attached NVME drive was not substantially different from the Fiber Channel

based storage solution. Oracle RAC database has not performed well with

shared disks backed by OpenShift Data Foundation storage. Overall TPM was

lower compared to single instance Oracle Database with a significant

proportion of CPU cycles spent on IO waits during runs. Test runs with fiber

channel based storage showed improvement of 83 percent compared to

OpenShift Data Foundation storage.

Tests on servers with higher capacity (Cluster 2) have shown improvement in

throughput with Red Hat OpenShift Data Foundation storage for Oracle Single

Instance database by approximately 20% . While tests with Oracle RAC

database have shown similar improvements in performance numbers it still

fallen short to the throughput with FC SAN based storage.

Evaluation of impact of VM Live Migration

As the ability to migrate virtual machines running database workloads from
one OpenShift node to another is an important functionality of any
virtualization platform, we have conducted a separate set of the tests to
assess impact of virtual machine Live Migration on stability of the Oracle
Database and performance.

For the Live Migration test we have used Swingbench load generator running
TPC-C benchmark tests. Swingbench was selected due to better reporting
capabilities on individual transaction level compared to Hammer DB.
Database schema was populated with seed data to have similar size as with
tests done with Hammer DB.
Each live migration test was done without load before and during the
migration and with the load of 100 virtual users performing transactions. No
additional configuration changes were done on OpenShift Virtualization
platform level to optimize performance of Live Migration framework.
For single instance Oracle Database live migration took on average 1-2
minutes without significant difference between migration of virtual machine
with idle database and under the load. During migration no failed or rolled
back transactions have been reported but TPM (transactions per minute)
metrics went down for brief moment recovering to the original level after
completion of migration

Migration for one of the nodes of the Oracle RAC cluster took around 3
minutes. At the same time due to the brief pause in network communication
during transition to a different SR-IOV interface, Oracle RAC High Availability
services noticed loss of heartbeat through the interconnect associated
network interface and initiated a failover process of Oracle RAC services to
unaffected nodes. While there were no failed transactions, the TPM level has
fallen for a period of time . After completion of the live migration Oracle RAC
has initiated recovery and restored the original level of redundancy of nodes.

Final thoughts

OpenShift Virtualization is a feasible and a viable platform to deploy Oracle

Database 19c workloads. The ease of setting up OpenShift Virtualization

offers robust support for creating virtual machines. Considering these factors,

OpenShift Virtualization stands as a serious contender and alternative to

competing virtualization technologies offerings. The current performance

validation of Oracle Database 19c demonstrates enterprise grade

performance on OpenShift Virtualization platform.

Through testing with different storage options, we assessed the impact of

high-performance storage options and found strong indications that upgrading

to high-performance storage solutions like FC SAN may significantly improve

overall performance. While single instance Oracle Database performed well

with Kubernetes native OpenShift Data Foundation storage providing reduced

operational cost, scalability and reliability, for demanding workloads running

on Oracle RAC Databases FC SAN solution is recommended.

For high-performance workloads, consider:

●​ High-performance storage options such as FC SAN for Oracle

Database data files and redo logs to optimize performance.

●​ Segment network for virtual machines, OpenShift OVN-Kubernetes

and storage network preferably using separate physical devices on

OpenShift Virtualization nodes.

●​ For Oracle RAC Databases consider further use of separate physical

devices for the private virtual network interfaces used by interconnect

component.

●​ SR-IOV (Single Root I/O Virtualization), if supported by hardware to

optimize performance of virtual network interfaces of virtual

machines hosting Oracle Database workload.

●​ HugePages with the Oracle Database setting USE_LARGE_PAGES

based on your workload requirements: This configuration adjusts the

memory page size, recommended for improved performance,

especially when working with SGAs larger than the default settings.

You can find HammerDB test scripts in this GitHub repository.

The oracle-db-appdev-monitoring GitHub project aims to provide observability

for the Oracle Database so users can understand performance and diagnose

issues easily across applications and databases. Read the instructions to set

up the project on the OpenShift platform.

https://github.com/RHEcosystemAppEng/oracle-ocpv-benchmark
https://github.com/oracle/oracle-db-appdev-monitoring
https://github.com/RHEcosystemAppEng/oracle-ocpv-benchmark/blob/main/oracle-metrics/readme.md

	Oracle Database Workloads On OpenShift Virtualization Reference Architecture
	Background
	OpenShift Virtualization architecture overview
	Oracle Database design principles
	Reference architecture
	Compute
	Network
	Storage

	Hardware configuration
	OpenShift Virtualization configuration
	Oracle Database configuration
	Oracle Database Single Instance
	Oracle RAC database

	Observability and monitoring
	System performance evaluation
	Test coverage summary

	Evaluation of impact of VM Live Migration
	Final thoughts

